Quantum Transport

in graphene nanostructures

Simon Mutien-Marie Dubois

University of Cambridge Cavendish Laboratory

Graphene wonderland....

IBM 100-GHz Transistors from epitaxial Graphene !

Science **327**, 662 (2010)

show extremely high carriers mobilities and hold great promises for applications in electronics such as ultrahigh-speed transistors !

Graphene wonderland....

X. Wang et al. Science 324, 768 (2009)

Well defined smooth GNRs

X. Li et al., Science 319, 1299 (2008) M.Y. Han et al., PRL 98, 206805 (2007)

Half-metallicity of GNRs in electric fields

Berger, de Heer

Son et al., Nature 444, 347 (2006)

Very large magnetoresistance in GNRs

W.Y. Kim and K.S. Kim, Nature Nanotech. 3, 408 (2008)

P- and n-type graphene FET X. Wang et al., Science 324, 768 (2009)

Outline of presentation

- Graphene : its structure and properties
 - \rightarrow why do we consider graphene nanoribbons for application in nano-electronics ?
- Graphene nanoribbons
 - → electronic confinement, reconstruction of the edge, stability of point-defects
- Electronic transport in defective nanoribbons
 - → conductance patterns of point-defects, conductance scaling in mesoscopic samples
- Onetep future capabilities regarding quantum transport

Outline of presentation

- Graphene : its structure and properties
 - \rightarrow why do we consider graphene nanoribbons for application in nano-electronics ?
- Graphene nanoribbons
 - → electronic confinement, reconstruction of the edge, stability of point-defects
- Electronic transport in defective nanoribbons
 - → conductance patterns of point-defects, conductance scaling in mesoscopic samples
- Onetep future capabilities regarding quantum transport

Graphene, the thinnest of all materials....

Graphene :

2D plane in which carbon atoms are periodically arranged in an hexagonal network.

Graphene, the thinnest of all materials....

Graphene :

2D plane in which carbon atoms are periodically arranged in an hexagonal network.

Peculiar energy-momentum relation :

Band structure :

$$\hat{H} = \sum_{\mathbf{R}} \left(\epsilon_a \, \hat{a}_{\mathbf{R}}^{\dagger} \hat{a}_{\mathbf{R}} + \epsilon_b \, \hat{b}_{\mathbf{R}+\mathbf{e}_1}^{\dagger} \hat{b}_{\mathbf{R}+\mathbf{e}_1} \right) + \sum_{\mathbf{R}} \sum_{i=1,3} -t \left(\hat{b}_{\mathbf{R}+\mathbf{e}_i}^{\dagger} \hat{a}_{\mathbf{R}} + \hat{a}_{\mathbf{R}}^{\dagger} \hat{b}_{\mathbf{R}+\mathbf{e}_i} \right)$$

Peculiar energy-momentum relation :

The remarquable properties of graphene :

• Peculiar energy-momentum relation

DFT calculation

- Zero gap
- Broken electron-hole
- Linear dispersion

J.-C. Charlier et al. Rev. Mod. Phys. 79, 677 (2007)

Many remarquable properties :

- Peculiar energy-momentum relation
 - \rightarrow connection with the 2D massless Dirac equation
 - \rightarrow anomalous quantum Hall effect, Klein paradox,
- High thermal conductivity (up to 5300 [W/m.K] at room temp) Diamond : up to 2000 [W/m.K] Cu : ~ 400 [W/m.K]
- Ultra high carriers mobilities (up to 200.000 [cm²/V.s] at room temp) Silicon : 1400 [cm²/V.s] and InSb : 78000 [cm²/V.s]
- Spin coherence length up to 1 μm
- Strongest material ever measured (extremely high Young modulus and breaking stress)
- Chemically inert, thermally stable, optically transparent

Great promises for application in electronics....

Spintronic applications

Micro-electro-mechanical devices (MEMS)

Field emitters

Ultrafast transistor

Devices in extreme conditions

Transparent electrodes for LEDs, improved solar cells?

Gas and molecules sensors

Nanoscale electric connections

A bit too conductive for FET....

No energy gap ! Poor I_{on}/I_{off} ratio, not convenient for digital applications.

IBM 100-GHz Transistors from epitaxial Graphene *Science* **327**, 662 (2010)

→ Graphene nanoribbons !

Energy gaps in graphene nanoribbons?

Schematic representation of a GNR-FET and AFM image of actual GNR-FET devices. Y.-M. Li et al., PRB 78, 161409(R) (2008).

- \rightarrow High I_{on}/I_{off} ratio (> 10⁵)
- \rightarrow Carriers mobilities ~1000 cm²/V.s

(<< 10^5 cm²/V.s in graphene)

 \rightarrow Poor signal to noise ratio

Outline of presentation

- Graphene : its structure and properties
 - \rightarrow why do we consider graphene nanoribbons for application in nano-electronics ?
- Graphene nanoribbons
 - \rightarrow electronic confinement, reconstruction of the edge, stability of point-defects
- Electronic transport in defective nanoribbons
 - → conductance patterns of point-defects, conductance scaling in mesoscopic samples
- Onetep future capabilities regarding quantum transport

Theoretical framework.....

- \rightarrow Pseudopotentials
- \rightarrow LDA, GGA, Hybrid functionals
- \rightarrow Localized basis set : NAOs
- \rightarrow Atomic forces, stress tensor, (phonon)

- + efficient basis \rightarrow high speed
- + direct interface with NEGF
- + extraction of adjusted TB parameters
- + lack of systematic variational convergence

- \rightarrow Pseudopotentials
- \rightarrow LDA, GGA, Hybrid functionals
- \rightarrow Plane Waves, PAW, (wavelets)
- \rightarrow Atomic forces, stress tensor
- \rightarrow Response functions (1st, 2nd, 3th deriv)
- \rightarrow GW approximation
- + Complete basis sets
- + Lots of capabilities
- + Very robust
- + Lower speed
- + Indirect interface with NEGF via Max. Loc. Wannier Functions

Energy gaps in graphene nanoribbons?

Experimental evidence of 2 main edge directions in graphene :

Afm image from X. Li et al. Science 319, 1229 (2008)

Aberration-corrected TEM images from C.O. Girit et al. Science 323, 1705 (2009)

Two prototypical cutting directions with 30° of relative orientations, giving rise to the zigzag and armchair GNRs

Electronic confinement :

K. Nakada et al., Phys. Rev. B 54, 17954 (1996)

Electronic confinement in GNRs :

Electronic confinement in GNRs :

Y.-W. Son et al., Phys. Rev. Lett. 97, 216803 (2006) S. M.-M. Dubois et al., Eur. Phys. J. B 72, 1 (2009)

Electronic confinement in GNRs :

S. M.-M. Dubois et al., Eur. Phys. J. B 72, 1 (2009)

Local reconstruction of the GNRs : Point-defects

Irradiation induced defects observed with HRTEM from A Hashimoto et al., Nature 430, 870 (2004)

Metastable defects found in HRTEM image sequences from J.C. Meyer et al., NanoLetters 8, 3582 (2008)

- \rightarrow Defects are ubiquitous in graphene and is always expected in actual samples
- → The introduction of defects also offer the opportunity to tailor the electronic properties in many different ways....

Impact of point-defects on the electronic structure

Point-defects : stability analysis...

Irradiation induced defects observed with HRTEM from A Hashimoto et al., Nature 430, 870 (2004)

- → Here we focus on the vacancies and ad-atoms. Not only they are intrinsic in graphene but their concentration can be tuned by irradiation.
- \rightarrow Point-defects are highly mobile and likely to recombine together or with the edges.
- → All the defects configuration have been considered (vacancy, di-vacancy, adatom, carbon dimer)
- → Hydrogenation of the defect has been used to assess the defect chemical reactivity

Most stable defects configurations....

Most stable defects configurations....

- \rightarrow In GNRs, the point defects are likely to migrate and recombine at the edge
- → Point-defects therefore contribute to the edge reconstruction (roughness, odd-membered ring)
- \rightarrow zGNRs are less robust than aGNRs with respect to the introduction of defects at the edges

Outline of presentation

- Graphene : its structure and properties
 - \rightarrow why do we consider graphene nanoribbons for application in nano-electronics ?
- Graphene nanoribbons
 - → electronic confinement, reconstruction of the edge, stability of point-defects
- Electronic transport in defective nanoribbons
 - → conductance patterns of point-defects, conductance scaling in mesoscopic samples
- Onetep future capabilities regarding quantum transport

Quantum computational tools...

The transport problem :

Schematic representation of GNR-FT

- \rightarrow Intrinsic properties (i.e. no-contact, gate, substrate)
- \rightarrow Coherent transport only
- \rightarrow Leads at thermal equilibrium
- → Green's functions to describe the carriers propagation across the device :

$$\left[\left(E + i\delta \right) - \mathcal{H} \right] \mathcal{G}^r(E) = \mathcal{I}$$

Quantum computational tools...

- \rightarrow Intrinsic properties (i.e. no-contact, gate, substrate)
- \rightarrow Coherent transport only
- \rightarrow Leads at thermal equilibrium
- → Green's functions to describe the carriers propagation across the device :

$$\left[\left(E + i\delta \right) - \mathcal{H} \right] \mathcal{G}^r(E) = \mathcal{I}$$

The transport setup

The transport setup

Decomposition of system into principal layers (Pls) :

Retarded Green function :

$$\left[\left(E + i\delta \right) - \mathcal{H} \right] \mathcal{G}^r(E) = \mathcal{I}$$

 \rightarrow description of the electrons propagation

Retarded Green function of the single particle Hamiltonian :

$$\begin{pmatrix} \epsilon^{+} S_{L} - \mathcal{H}_{L} & S_{LD} - \mathcal{H}_{LD} & 0 \\ S_{DL} - \mathcal{H}_{DL} & \epsilon^{+} S_{D} - \mathcal{H}_{D} & S_{DR} - \mathcal{H}_{DR} \\ 0 & S_{RD} - \mathcal{H}_{RD} & \epsilon^{+} S_{R} - \mathcal{H}_{R} \end{pmatrix} \cdot \begin{pmatrix} \mathcal{G}_{L} & \mathcal{G}_{LD} & \mathcal{G}_{LR} \\ \mathcal{G}_{DL} & G_{D} & \mathcal{G}_{DR} \\ \mathcal{G}_{RL} & \mathcal{G}_{RD} & \mathcal{G}_{R} \end{pmatrix} = \mathcal{I}$$

Out-of-equilibrium density and the electric current (DFT + NEGF)

Pentagon

Heptagon

- \rightarrow Excess of electron on the pentagon
- \rightarrow Defect state at -0.3 eV
- \rightarrow Acceptor character

- \rightarrow Deficit of electron on the heptagon
- \rightarrow Defect state at 0.05 eV
- \rightarrow Donor character

S.M.-M. Dubois, A. Lopez-Bezanilla, A. Cresti, F. Triozon, B. Biel, J.-C. Charlier, and S. Roche ACS Nano, DOI: 10.1021/nn100028q

Electronic transport: hydrogenation of the defects

Pentagon hydro

Heptagon hydro

S.M.-M. Dubois, A. Lopez-Bezanilla, A. Cresti, F. Triozon, B. Biel, J.-C. Charlier, and S. Roche ACS Nano, DOI: 10.1021/nn100028q

Electronic transport : benzenoid-like defects

- \rightarrow Benzenoid-like defects are likely to have a weak impact on T(E)
- → Hydrogenation tends to restore the benzenoid character of the ribbon and the conductivity!

Transport at the mesoscopic scale :

F. Triozon et al., Nanotechnology 16, 230 (2005)

- Based on the GS hamiltonian
- Non-self consistent transport calculations
- Divide and conquer methodology
- Adjusted TB models

Transport at the mesoscopic scale :

F. Triozon et al., Nanotechnology 16, 230 (2005)

- Based on the GS hamiltonian
- Non-self consistent transport calculations
- Divide and conquer methodology
- Adjusted TB models

Transport at the mesoscopic scale :

F. Triozon et al., Nanotechnology 16, 230 (2005)

Full system :

$$[(E + i\delta)S - H] . G(E) = \mathcal{I}$$

$$K(E) . G(E) = \mathcal{I}$$

$$\sum_{j=1}^{N} K_{ij} G_{jk} = \delta_{ik}$$

Isolation :

$$\sum_{j=1}^{N-1} K_{ij} G_{jk} + K_{iN} G_{Nk} = \delta_{ik}$$

$$G_{Nk} = \frac{\sum_{j=1}^{N-1} K_{Nj} G_{jk}}{K_{NN}} \quad (fork \neq N)$$

Elimination :

$$\sum_{j=1}^{N-1} \left[K_{ij} - \frac{K_{iN} K_{Nj}}{K_{NN}} \right] G_{jk} = \delta_{ik}$$

Long aGNRs (up to 5 μ m) with a defect density of 6x10⁻² nm⁻¹

- \rightarrow Strong impact of the edge roughness
- → Odd-membered rings
 ⇒ large electron-hole anisotropy
- → Transport ranging from ballistic to highly localized regimes
- → Benzenoid defects (or hydrogenation)
 ⇒ improved carriers propagation

S.M.-M. Dubois, A. Lopez-Bezanilla, A. Cresti, F. Triozon, B. Biel, J.-C. Charlier, and S. Roche ACS Nano, DOI: 10.1021/nn100028q

Outline of presentation

- Graphene : its structure and properties
 - \rightarrow why do we consider graphene nanoribbons for application in nano-electronics ?
- Graphene nanoribbons
 - → electronic confinement, reconstruction of the edge, stability of point-defects
- Electronic transport in defective nanoribbons
 - → conductance patterns of point-defects, conductance scaling in mesoscopic samples
- Onetep future capabilities regarding quantum transport

Quantum computational tools...

The transport problem :

Transport calculation with ONETEP...

The transport problem :

- \rightarrow More realistic defect patterns
- → Account for the defect-defect interaction (e.g. magnetic coupling)
- \rightarrow Complete basis set
 - $(\rightarrow \text{ controllable accuracy})$
 - $(\rightarrow \text{ non-coherent processes})$

Transport calculation with ONETEP...

The transport problem :

 \rightarrow Minimal basis set

- \rightarrow More realistic defect patterns
- → Account for the defect-defect interaction (e.g. magnetic coupling)
- \rightarrow Complete basis set
 - $(\rightarrow \text{ controllable accuracy})$
 - $(\rightarrow \text{ non-coherent processes})$

Transport calculation with ONETEP...

The transport problem :

Future developments

- → Improve the current implementation (sparsity patterns, parallelization, ...)
- $\rightarrow \text{ Progress towards the O(N) scaling}$ (e.g. decimation of the Green's function)
- \rightarrow Achieve self-consistency (with fixed NGWFs)

Conclusions

Electronic confinement in GNRs

- Edge relaxation and magnetic order \Rightarrow energy gaps in aGNRs and zGNRs
- Structure of the thermodynamically stable edges depends on P $_{\rm H2}$
- The most stable edge topologies have been identified $(a_{22}, a_{11}, z(600)_{2222}, z_{211})$.

Topological defects in GNRs

- Vacancies and adatoms coalesce / recombine with the edges
- Bulk and edge defects are centers of high chemical reactivity
- Most stable *bulk* defects : di-vacancy and adatom+H₂
- Most stable *edge* defects : Dips (and odd-membered rings in aGNRs)

Quantum transport in defective GNRs

- Quasi-localized states and backscattering \Rightarrow reduction of the conductance
- Bonding energies and conductance patterns strongly depend on the defect position
- Edge-states strongly impact the T(E) of zGNRs \Rightarrow ballistic channels around E_F
- Full hydrogenation helps in preserving the conduction in defective GNRs
- Impact of defect range from weak scattering to full suppression of conduction channels
- Conductance scaling of aGNRs strongly depends on the edge profile

Acknowledgment

- → My previous supervisors : Jean-Chritophe Charlier and Gian-Marco Rignanese
- \rightarrow Mike Payne
- → The mesoscopic transport calculation have been done in collaboration with Stephan Roche, François Triozon, Blanca Biel, Alejandro Lopez-Bezanilla and Alessandro Cresti from the CEA Grenoble
- → I acknowledge Nick, David, Daniel, Arash, Peter, Chris, Tonatiuh, Aurélien and François for interesting and valuable discussions.....