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Exchange energy

• Electrons are fermions, so Pauli's exclusion principle applies.

• This imposes the antisymmetry requirement on the wave-
function:

• Even though the electrons do not interact explicitly, they still
feel the presence of each other, because they are quantum-
mechanical in nature.

• At the HF level of theory, this interaction is represented by the
following exchange energy expression:



Exchange (and correlation) energy in DFT

• The exact functional for exchange and correlation is
not known, so we resort to approximations.

– LDA:

– LSDA:

– GGA:

• A convicing argument can be made (using the
concept of adiabatic connection [1-2]), that a good
description of the exchange and corelation can be
obtained by:

DFT

DFT

DFT



Hybrid exchange

• This observation is the inspiration for hybrid
functionals, which replace a portion of the DFT
exchange with HF exchange.



Advantages of hybrid functionals
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Advantages of hybrid functionals

[4].

,

• To be able to utilize hybrid functionals, such as B3LYP.

• To perform Hartree-Fock calculations.

• To lay groundwork for future implementation of other
wavefunction methods, such as MP2.

Motivation for including HF exchange in ONETEP



• HF exchange energy in terms of molecular orbitals:

• HF exchange energy in terms of NGWFs:

How to calculate it?

• Hartree energy in terms of molecular orbitals:

• Hartree energy in terms of NGWFs:



• HF exchange energy in terms of NGWFs:

• HF exchange energy in terms of the exchange matrix:

How to calculate it?





















Approach 1: calculating the electrostatic 
integral in reciprocal space



Approach 1 – conclusions

• Already available in ONETEP since 2.3.0, in main
branch.

• Requires manual adjustment of the FFT box to
coincide with the simulation cell.

• Scales as O(N2), vacuum is not free, large prefactor.

• Cannot obtain results in reasonable time beyond 20
atoms.

System # of atoms Time of 1 LNV 
iteration [s]

on N cores, N=

H2O 3 640 2

Si16 16 1405 16

benzene 12 28647 8



Let's try something different



Approach 2: Direct numerical integration

• The integral must be
evaluated anew for every
"interesting" point r1.

• ... that is everywhere, where
is nonzero.

• What is more, the integral
depends on both  and .

• It all boils down to a 6D
integration, where for every
block of the X matrix, the
potential integral over all
points of one tightbox must
be calculated for every point
in another tightbox.



Approach 2: Direct numerical integration

System # of atoms Time of 1 LNV 
iteration [s]

on N cores, N=

H2O 3 136 1

benzene dimer 24 7814 16

P4_2BOH 36 17872 24

DTQGY 71 98000 32

156 689000 48

Way too slow!



Approach 2: Direct numerical integration

System # of atoms Time of 1 LNV iteration [s]
original optimized

on N cores, N=

H2O 3 136 38 1

benzene dimer 24 7814 705 16

P4_2BOH 36 17872 1451 24

DTQGY 71 98000 17135 32

156 689000 42311 48

Carefully optimizedStill way too slow!



Approach 2: Direct numerical integration



Approach 2: Direct numerical integration

Apply coarse-graining 
where we can get away 

with it.



Approach 2: Direct numerical integration

System # of 
atoms

Time of 1 LNV iteration [s]
original optimized          cg'ed

on N cores, 
N=

H2O 3 136 38 38 1

benzene dimer 24 7814 705 714 16

P4_2BOH 36 17872 1451 1364 24

DTQGY 71 98000 17135 16613 32

156 689000 42311 25757 48

Coarse-graining applied at longer distancesStill way too slow!



Approach 2 – conclusions

• Working linear-scaling approach, but the prefactor is
so huge, we'll never get to the linear-scaling regime.

• Implemented in the Southampton development
version since 2.4.12 (but not available in the main
branch).

• Can serve as a reference calculation.

• Useless beyond ca. 80 atoms.



Approach 3: expanding P(r2)



Approach 3: expanding P(r2) 
in terms of spherical waves



Approach 3: expanding P(r2) 
in terms of spherical waves

• It's possible to analytically evaluate the inner
potential integral in constant time, so, with kernel
truncation, O(N) scaling possible.

• However, we need the expansion coefficients, {ci}:

spherical waves centered 

on atoms A and B.

• These can be obtained by
calculating and inverting the V
matrix.



Approach 3: the procedure



Approach 3 – conclusions

• Algebraically sound and clever.

• Appears very sensitive to the accuracy of the V
matrix.

• At current state has difficulties converging density
kernel.

• Needs more analysis.

• Currently trying to compute by integrating on
a radial grid, instead of a Cartesian grid in tightboxes,
to improve accuracy and, hopefully, get convergence.

• Initial results encouraging, but remaining bugs need
to be squashed.



Conclusions: current state of affairs 

• B1LYP, B1PW91, B3LYP, B3PW91, PBE0 and X3LYP
already implemented in ONETEP, but only usable for
the smallest systems.

• Approaches 1 (FFT-based) and 2 (direct brute-force
integration) work, but can only serve as benchmarks.

• Approach 3 (SW-expansion-based) still somewhat
broken, but looks promising.



Future outlook

• Implement newer hybrid functionals, which use the
modified (truncated, decaying) Coulomb operator.

• Implement more advanced wavefunction methods
(MP2, etc.).

• Working exchange potential can be easily adapted to
the calculation of the Hartree potential, yielding a
new way to calculate the Hartree energy with open
boundary conditions.
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Backup slide: 
overlap vs. electrostatic metric


