

Hartree-Fock Exchange and Hybrid Exchange-Correlation Functionals

Quintin Hill, Jacek Dziedzic, Chris-Kriton Skylaris

School of Chemistry University of Southampton

ONETEP Summer School, April 2010

Exchange energy

- Electrons are fermions, so Pauli's exclusion principle applies.
- This imposes the antisymmetry requirement on the wavefunction: $\mathbf{x}_i = \{\mathbf{r}_i, s_i\}$

$$\Psi(\cdots,\mathbf{x}_i,\cdots,\mathbf{x}_j,\cdots)=-\Psi(\cdots,\mathbf{x}_j,\cdots,\mathbf{x}_i,\cdots)$$

- Even though the electrons do not interact explicitly, they still feel the presence of each other, because they are quantummechanical in nature.
- At the HF level of theory, this interaction is represented by the following exchange energy expression:

$$E_X^{HF} = -\sum_{ij} f_i f_j \int \int \frac{\psi_i^*(\mathbf{r}_1)\psi_i(\mathbf{r}_2)\psi_j^*(\mathbf{r}_2)\psi_j(\mathbf{r}_1)}{|\mathbf{r}_1 - \mathbf{r}_2|} d\mathbf{r}_1 d\mathbf{r}_2$$

Exchange (and correlation) energy in DFT

• The exact functional for exchange and correlation is not known, so we resort to approximations.

- LDA:

$$E_{\rm XC}^{\rm DFT}[n] = \int \epsilon_{\rm XC}(n)n(\vec{r})d^{3}r.$$
- LSDA:

$$E_{\rm XC}^{\rm DFT}[n_{\uparrow},n_{\downarrow}] = \int \epsilon_{\rm XC}(n_{\uparrow},n_{\downarrow})n(\vec{r})d^{3}r.$$
- GGA:

$$E_{\rm XC}^{\rm DFT}[n_{\uparrow},n_{\downarrow}] = \int \epsilon_{\rm XC}(n_{\uparrow},n_{\downarrow},\vec{\nabla}n_{\uparrow},\vec{\nabla}n_{\downarrow})n(\vec{r})d^{3}r.$$

 A convicing argument can be made (using the concept of adiabatic connection [1-2]), that a good description of the exchange and corelation can be obtained by:

$$E_{xc} = (1-a)E_{xc}^{DFT} + aE_x^{HF}.$$

Hybrid exchange

 This observation is the inspiration for hybrid functionals, which replace a portion of the DFT exchange with HF exchange.

PBE0: $E_{xc}^{PBE0} = E_{xc}^{PBE} + 0.25 (E_x^{HF} - E_x^{PBE})$ B3LYP: $E_{xc}^{B3LYP} = E_{xc}^{LDA} - a_0 (E_x^{HF} - E_x^{LDA}) + a_x \Delta E_x^{Becke88} + a_c (E_c^{LYP} - E_c^{LDA})$ with $a_0 = 0.20, a_x = 0.72$ and $a_c = 0.81$.

Advantages of hybrid functionals

More accurate bond energies

Method	Mean Abs Error (kcal mol ⁻¹)
B3LYP	4.93
Hartree-Fock	211.54
LDA	121.85
PBE	22.22

Table: mean absolute errors for the 223 enthalpies of formation of the G3/99 set of complexes [3].

Superior geometries

Method	Mean Abs Error (Å)
B3LYP	0.0104
Hartree-Fock	0.0249
LDA	0.0131
PBE	0.0159

Table: mean absolute errors of bond lengths from the T-96R set of complexes [3].

Advantages of hybrid functionals

 Improved accuracy of calculated band gaps for many solids, in particular metal oxides

Method	Band Gap (eV)
Experiment	3.75
B3LYP	3.89
Hartree-Fock	12.33
LDA	2.36
PBE	2.35

Table: $(\Gamma - \Gamma)$ band gaps calculated for SrTiO₃ perovskites structures [4].

Motivation for including HF exchange in ONETEP

- To be able to utilize hybrid functionals, such as B3LYP.
- To perform Hartree-Fock calculations.
- To lay groundwork for future implementation of other wavefunction methods, such as MP2.

How to calculate it?

• HF exchange energy in terms of molecular orbitals:

$$E_X^{HF} = -\sum_{ij} f_i f_j \int \int \frac{\psi_i^*(\mathbf{r}_1)\psi_i(\mathbf{r}_2)\psi_j^*(\mathbf{r}_2)\psi_j(\mathbf{r}_1)}{|\mathbf{r}_1 - \mathbf{r}_2|} d\mathbf{r}_1 d\mathbf{r}_2$$

• HF exchange energy in terms of NGWFs:

$$E_X^{HF} = -\sum_{\alpha\beta\gamma\delta} K^{\alpha\beta} K^{\gamma\delta} \int \int \frac{\phi_{\alpha}^*(\mathbf{r}_1) \phi_{\beta}(\mathbf{r}_2) \phi_{\gamma}^*(\mathbf{r}_2) \phi_{\delta}(\mathbf{r}_1)}{|\mathbf{r}_1 - \mathbf{r}_2|} d\mathbf{r}_1 d\mathbf{r}_2$$

• Hartree energy in terms of molecular orbitals:

$$E_H = -\sum_{ij} f_i f_j \int \int \frac{\psi_i^*(\mathbf{r}_1)\psi_i(\mathbf{r}_1)\psi_j^*(\mathbf{r}_2)\psi_j(\mathbf{r}_2)}{|\mathbf{r}_1 - \mathbf{r}_2|} d\mathbf{r}_1 d\mathbf{r}_2$$

• Hartree energy in terms of NGWFs:

$$E_{H} = -\sum_{\alpha\beta\gamma\delta} K^{\alpha\beta} K^{\gamma\delta} \int \int \frac{\Phi_{\alpha}^{*}(\mathbf{r}_{1}) \Phi_{\beta}(\mathbf{r}_{1}) \Phi_{\gamma}^{*}(\mathbf{r}_{2}) \Phi_{\delta}(\mathbf{r}_{2})}{|\mathbf{r}_{1} - \mathbf{r}_{2}|} d\mathbf{r}_{1} d\mathbf{r}_{2}$$

How to calculate it?

• HF exchange energy in terms of NGWFs:

$$E_X^{HF} = -\sum_{\alpha\beta\gamma\delta} K^{\alpha\beta} K^{\gamma\delta} \int \int \frac{\Phi_{\alpha}^*(\mathbf{r}_1) \Phi_{\beta}(\mathbf{r}_2) \Phi_{\gamma}^*(\mathbf{r}_2) \Phi_{\delta}(\mathbf{r}_1)}{|\mathbf{r}_1 - \mathbf{r}_2|} d\mathbf{r}_1 d\mathbf{r}_2$$

• HF exchange energy in terms of the exchange matrix:

$$E_X^{HF} = -\sum_{\alpha\beta} K^{\alpha\beta} X_{\alpha\beta}.$$
$$X_{\alpha\beta} = \sum_{\substack{\gamma\delta \\ S_{\alpha\delta} \neq 0 \\ S_{\beta\gamma} \neq 0}} \int \varphi^*_{\alpha}(\mathbf{r}_1) \varphi_{\delta}(\mathbf{r}_1) \int \frac{\varphi_{\beta}(\mathbf{r}_2) K^{\gamma\delta} \varphi^*_{\gamma}(\mathbf{r}_2)}{|\mathbf{r}_1 - \mathbf{r}_2|} d\mathbf{r}_2 d\mathbf{r}_1,$$

$$U_{\beta\delta}(\mathbf{r}_{1}) = \int \frac{P(\mathbf{r}_{2})}{|\mathbf{r}_{1} - \mathbf{r}_{2}|} d\mathbf{r}_{2}$$

$$P(\mathbf{r}_{2}) = \sum_{\substack{\gamma \\ S_{\beta\gamma} \neq 0}} \phi_{\beta}(\mathbf{r}_{2}) K^{\gamma\delta} \phi_{\gamma}^{*}(\mathbf{r}_{2})$$

$$X_{\alpha\beta} = \sum_{\substack{\gamma \\ S_{\beta\gamma} \neq 0}} \int \phi_{\alpha}^{*}(\mathbf{r}_{1}) \phi_{\delta}(\mathbf{r}_{1}) \int \frac{P(\mathbf{r}_{2})}{|\mathbf{r}_{1} - \mathbf{r}_{2}|} d\mathbf{r}_{2} d\mathbf{r}_{1}$$

Approach 1: calculating the electrostatic integral in reciprocal space

$$X_{\alpha\beta} = \sum_{\substack{\gamma\delta\\ S_{\alpha\delta}\neq 0\\ S_{\beta\gamma}\neq 0}} \int \varphi_{\alpha}^{*}(\mathbf{r}_{1})\varphi_{\delta}(\mathbf{r}_{1}) \int \frac{\varphi_{\beta}(\mathbf{r}_{2})K^{\gamma\delta}\varphi_{\gamma}^{*}(\mathbf{r}_{2})}{|\mathbf{r}_{1}-\mathbf{r}_{2}|} d\mathbf{r}_{2}d\mathbf{r}_{1}$$

Simulation Cell = FFT box

 Evaluation of the inner potential integral by FFTs would require several FFTs of the entire simulation cell for each pair of atoms. Result: quadratic scaling.

Approach 1 – conclusions

- Already available in ONETEP since 2.3.0, in main branch.
- Requires manual adjustment of the FFT box to coincide with the simulation cell.
- Scales as $O(N^2)$, vacuum is not free, large prefactor.
- Cannot obtain results in reasonable time beyond 20 atoms.

System	# of atoms	Time of 1 LNV iteration [s]	on <i>N</i> cores, <i>N</i> =
H ₂ O	3	640	2
Si ₁₆	16	1405	16
benzene	12	28647	8

Let's try something different

- The integral $U_{\beta\delta}(\mathbf{r}_1)$ must be evaluated anew for every "interesting" point \mathbf{r}_1 .
- ... that is everywhere, where $\phi_{\alpha}^{*}(\mathbf{r}_{1})\phi_{\delta}(\mathbf{r}_{1})$ is nonzero.
- What is more, the integral depends on both β and δ .
 - It all boils down to a 6D integration, where for every block of the X matrix, the potential integral over all points of one tightbox must be calculated for every point in another tightbox.

System	# of atoms	Time of 1 LNV iteration [s]	on <i>N</i> cores, <i>N</i> =		
H ₂ O	3	136	1		
benzene dimer	24	7814	16		
P4_2BOH	36	17872	24		
DTQGY	71	98000	32		
	156	689000	48		
Way too slow!					

System	# of atoms	Time of 1 LNV iteration [s] original optimized		on <i>N</i> cores, <i>N</i> =
H ₂ O	3	136	38	1
benzene dimer	24	7814	705	16
P4_2BOH	36	17872	1451	24
DTQGY	71	98000	17135	32
	156	689000	42311	48
1. 199 See	_			

Still way too slow!

System	# of	Time of 1 LNV iteration [s]			on N cores,
	atoms	original	optimized	cg'ed	N=
H ₂ O	3	136	38	38	1
benzene dimer	24	7814	705	714	16
P4_2BOH	36	17872	1451	1364	24
DTQGY	71	98000	17135	16613	32
	156	689000	42311	25757	48

Still way too slow!

Approach 2 – conclusions

- Working linear-scaling approach, but the prefactor is so huge, we'll never get to the linear-scaling regime.
- Implemented in the Southampton development version since 2.4.12 (but not available in the main branch).
- Can serve as a reference calculation.
- Useless beyond ca. 80 atoms.

Approach 3: expanding $P(\mathbf{r}_2)$

$$X_{\alpha\beta} = \sum_{\substack{\gamma\delta\\S_{\alpha\delta}\neq0\\S_{\beta\gamma}\neq0}} \int \phi_{\alpha}^{*}(\mathbf{r}_{1}) \phi_{\delta}(\mathbf{r}_{1}) \int \frac{\phi_{\beta}(\mathbf{r}_{2})K^{\gamma\delta} \phi_{\gamma}^{*}(\mathbf{r}_{2})}{|\mathbf{r}_{1} - \mathbf{r}_{2}|} d\mathbf{r}_{2} d\mathbf{r}_{1},$$

Solution: expand the NGWF product in an auxiliary basis set,

$$P(\mathbf{r}_{2}) = \sum_{\substack{\gamma \\ S_{\beta\gamma} \neq 0}} \phi_{\beta}(\mathbf{r}_{2}) K^{\gamma\delta} \phi_{\gamma}^{*}(\mathbf{r}_{2}) = \sum_{i}^{N_{\text{fit}}} f_{i}(\mathbf{r}_{2}) c_{i}$$

Requirements:

Potential (inner) integral can be evaluated analytically

$$U_{\beta\delta}(\mathbf{r}_{1}) = \int \sum_{\substack{\gamma \\ S_{\beta\gamma} \neq 0}} \frac{\phi_{\beta}(\mathbf{r}_{2}) K^{\gamma\delta} \phi_{\gamma}^{*}(\mathbf{r}_{2})}{|\mathbf{r}_{1} - \mathbf{r}_{2}|} d\mathbf{r}_{2} = \int \sum_{i}^{N_{\text{fit}}} \frac{f_{i}(\mathbf{r}_{2}) c_{i}}{|\mathbf{r}_{1} - \mathbf{r}_{2}|} d\mathbf{r}_{2}$$

- Cost per $X_{\alpha\beta}$ matrix element independent of system size
- Must represent product accurately

Approach 3: expanding $P(\mathbf{r}_2)$ in terms of spherical waves

Free particle Schrödinger (Helmholtz) Equation

$$\left(\nabla^2 + q^2\right)\psi = 0$$

Particle in a box with periodic boundary conditions:

Solutions are plane waves (e^{ig·r})

Particle in a sphere (of radius *a*):

Solutions are truncated spherical waves

$$\psi(\mathbf{r}) = \begin{cases} j_l(qr)Z_{lm}(\hat{\mathbf{r}}) & r < a\\ 0 & r \ge a \end{cases}$$

- *j*_l(*qr*) is a spherical Bessel function
- Z_{lm}(**î**) is a real spherical harmonic

•
$$E = \frac{1}{2}q^2 \Rightarrow q_{\max} = \sqrt{2E_{\max}}$$

[Haynes and Payne. Chem. Phys. Comm., 102 17, (1997)]

Approach 3: expanding $P(\mathbf{r}_2)$ in terms of spherical waves

- It's possible to analytically evaluate the inner potential integral in constant time, so, with kernel truncation, O(N) scaling possible.
- However, we need the expansion coefficients, {c_i}:

$$P(\mathbf{r}_{2}) = \sum_{\substack{\gamma \\ S_{\beta\gamma} \neq 0}} \phi_{\beta}(\mathbf{r}_{2}) K^{\gamma\delta} \phi_{\gamma}^{*}(\mathbf{r}_{2}) = \sum_{i}^{N_{\text{fit}}} f_{i}(\mathbf{r}_{2}) c_{i}$$

• These can be obtained by calculating and inverting the V and the spherical waves centered on atoms A and B. matrix. $(a|b) = \int \frac{a(\mathbf{r}_1)b(\mathbf{r}_2)}{|\mathbf{r}_1 - \mathbf{r}_2|} d\mathbf{r}_2$

$$(a|b) = \iint \frac{a(\mathbf{r}_1)b(\mathbf{r}_2)}{|\mathbf{r}_1 - \mathbf{r}_2|} d\mathbf{r}_2 d\mathbf{r}_1$$

$$\mathbf{c} = \mathbf{V}^{-1} (P|\mathbf{f})$$

$$V_{ij} = (f_i|f_j)$$

Approach 3: the procedure

Approach 3 – conclusions

- Algebraically sound and clever.
- Appears very sensitive to the accuracy of the V matrix.
- At current state has difficulties converging density kernel.
- Needs more analysis.
- Currently trying to compute v = (f|f) by integrating on a radial grid, instead of a Cartesian grid in tightboxes, to improve accuracy and, hopefully, get convergence.
- Initial results encouraging, but remaining bugs need to be squashed.

Conclusions: current state of affairs

- B1LYP, B1PW91, B3LYP, B3PW91, PBE0 and X3LYP already implemented in ONETEP, but only usable for the smallest systems.
- Approaches 1 (FFT-based) and 2 (direct brute-force integration) work, but can only serve as benchmarks.
- Approach 3 (SW-expansion-based) still somewhat broken, but looks promising.

Future outlook

- Implement newer hybrid functionals, which use the modified (truncated, decaying) Coulomb operator.
- Implement more advanced wavefunction methods (MP2, etc.).
- Working exchange potential can be easily adapted to the calculation of the Hartree potential, yielding a new way to calculate the Hartree energy with open boundary conditions.

Acknowledgments

- Chris-Kriton Skylaris, head of the group.
- Quintin Hill
- Stephen Fox
- Álvaro Ruiz Serrano
- Nicholas Zonias
- Chris Pittock
- Funding from EPSRC
 - Quintin's studentship,
 - my grant "Development of wide-ranging functionality in ONETEP".
- iSolutions, the guys who manage our PCs.
- Iridis3 and HECToR, the parallel machines.

members of the group

References

- 1. Langreth and Perdew, Solid State Comm. 17 (1975).
- 2. Gunnarsson and Lundqvist, Phys. Rev. 13 (1976).
- 3. Staroverov, Scuseria, Tao, and Perdew, J. Chem. Phys. **119** (2003); erratum in: **121** (2004).
- 4. Piskunov, Heifets, Eglitis and Borstel, Comp. Mater. Sci. 29 (2004).

Backup slide: overlap vs. electrostatic metric

$$P(\mathbf{r}_{2}) = \sum_{\substack{\gamma \\ S_{\beta\gamma} \neq 0}} \phi_{\beta}(\mathbf{r}_{2}) K^{\gamma\delta} \phi_{\gamma}^{*}(\mathbf{r}_{2}) = \sum_{i}^{N_{\text{fit}}} f_{i}(\mathbf{r}_{2}) c_{i}$$

Overlap metricElectrostatic metric $\langle a|b\rangle = \int a^*(\mathbf{r}_1)b(\mathbf{r}_1)d\mathbf{r}_1$ $(a|b) = \int \int \frac{a(\mathbf{r}_1)b(\mathbf{r}_2)}{|\mathbf{r}_1 - \mathbf{r}_2|}d\mathbf{r}_2d\mathbf{r}_1$ $\mathbf{c} = \mathbf{V}^{-1} \langle P|\mathbf{f} \rangle$ $\mathbf{c} = \mathbf{V}^{-1} (P|\mathbf{f})$ $V_{ij} = \langle f_i|f_j \rangle$ $V_{ij} = (f_i|f_j)$ if $i \neq j \Rightarrow \langle f_i|f_j \rangle = 0$ then $V_{ij} = (f_i|f_j)$ $c_i = \frac{\langle P|f_i \rangle}{\langle f_i|f_i \rangle}$ f_i centred on atom B.