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Importance of solvation

• Many important biochemical reactions occur in
aqueous solution.

• Performing calculations in vacuo often leads to greatly
inaccurate results. Especially sensitive properties and
phenomena include, among others:
– energy differences between molecular conformers [1],

– rates of reactions [2],

– tautomeric equilibria [1],

– π-facial sensitivity [2],

– molecular (esp. protein-protein) associations [1,3],

– protein structures [4],

– ligand binding free energies [5].

• Thus proper description of the solvent environment is crucial
in simulations of biological molecules.



Explicit solvent approach

• Introduce the solvent in
molecular detail.

• Pros:
– provides accurate treatment of

solute-solvent interactions,

• Cons:
– leads to an increase in system

size, possibly by an order of
magnitude [6],

– must average out instantaneous interactions before the
results become meaningful, ("integrate out" the degrees of
freedom of the solvent) [4],

– to avoid surface effects, PBCs must be introduced. This in
turn requires large cells to avoid artificial interactions
between replicated solutes.

Animation by C. Pittock



Implicit solvent approach

• Treat the solute explicitly and embed it within a
suitably defined cavity, the inside of which is
inaccessible to the solvent.

• Replace the solvent with an unstructured dielectric
continuum, only retaining its average effect on the
solute [7].

• The charge distribution of the
solute polarizes the dielectric,
creating a reflection charge,
which then interacts with the
solute [2].
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Implicit solvent approach

• In other words: one assumes that the macroscopic descrip-
tion of the solvent as continuous dielectric medium can be
used as an approximation on the microscopic scale [8].

• This works because the largest part of molecular
interactions in solution is characterized by low
specificity and low directionality [9].

• Pros:
– no solvent atoms necessary,
– eliminates the costly sampling of

the solvent degrees of freedom
[6],

– faster sampling of solute confor-
mations owing to absence of
solvent friction [5].
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Two terms in free energy of solvation

• The electrostatic or polar term describes the
response of the solvent to the charge distribution of
the solute [7].

• It is the difference between the electrostatic energy

in solvent and in vacuum.

∆Gsol = ∆Gpol + ∆Gnpol

rrr d )()(ρ
2
1 

only the total can 
be obtained 

experimentally



Obtaining         

• In vacuum the Poisson equation is
solved:

This is easiest to compute in reciprocal
space and that’s the way it’s done in
ONETEP.

• With an inhomogeneous dielectric
the generalized Poisson equation
needs to be solved:

This must be solved in real space with a
suitable solver.
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Two terms in solvation energy

• The nonpolar term accounts for the entropic cost of
forming a cavity within the solvent and for the van
der Waals interaction of the solute with thesolvent [4].

• Difficult to describe rigorously, heuristic approaches
are used.

• Most widely used approach is to represent it as a
linear function of the molecular surface area [7]:

∆Gnpol = gASA.

∆Gsol = ∆Gpol + ∆Gnpol



Important choices

• How the charges are represented:

– as classical point charges,

vs.

– distributed (charge densities).

• How solvation is treated:

– for a frozen system: the energy of solvation is determined
once, by adding the implicit solvent to the system and
observing the resulting change in energy,

– self-consistently: by re-calculating the solvent’s influence
during every step of energy minimization. This allows the
electronic charge density to „feel” the polarizing effect of
the solvent and to adapt its shape accordingly.

• Cavity shape.
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Spherical cavity

e = 80

e = 1

• Pros:
– simple (to implement),

– simple (runs fast).

• Cons:
– simple (not especially

realistic).

– molecules that are not
compact cannot be
easily fit into a sphe-
rical cavity.

• Has enjoyed conside-
rable success never-
theless ([2] & refs therein).



Interlocking spheres

e = 80

e = 1

• Employed in the PCM
approach developed by
Tomasi, Scrocco and
Miertus [9].

• Pros:
– More realistic cavity.

– Applicable to molecules
of any shape.

• Cons:
– Requires extra input:

parametrization for the
sphere radii.



Arbitrariness of the cavity

[10]
(refs 55-57 in [10])

[10]



Density-dependent cavity

e = 80

e = 1



Density-dependent cavity of Fattebert and Gygi



e = 5, qin= 97.7%

e = 40, qin= 99.0%

e = 70, qin= 99.5%

e = 79, qin= 99.8%

Density-dependent cavity



Implementing IS in ONETEP

• Interface with APBS [10] (Adaptive Poisson-Boltzmann
Solver) code.

• APBS is a multigrid solver that can calculate given

and . It also automatically calculates the polar
term of the solvation energy as:

• We are currently pursuing both the frozen density
approach and the self-consistent one.
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Grid and padding

ONETEP’s box
APBS’s box

• Charge densities, potentials are represented on a grid
commensurate with ONETEP’s fine grid.

• Currently using d = 0.136 Å (KE cutoff ≈780 eV).

• A small amount of padding (≈ 1 Å) is necessary.

Self-consistent approachFrozen density approach and

padding

unpadding



Frozen density approach



Implementing IS in ONETEP

Frozen density approach

run usual 
ONETEP 

calculation 
in vacuum

input.dat

electronic charge 
density.dx

spill cores
to grid

core charge density.dxcore positions.pqr

total charge density.dx

+

run APBS,
ε = 1

run APBS,
ε = 80

Compare, 
evaluate ∆Gpol.

trivial
conversion



First results

Frozen density approach



First results

Frozen density approach



Correcting the effect of PBCs

Frozen density approach

[11] Scherlis, Fattebert, Gygi, Cococcioni and Marzari, 
J. Chem. Phys. 124 (2006).
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Periodic images of 
the system interact 

with each other.



First results

Frozen density approach



First results

Frozen density approach



Self-consistent approach



Preparation

• An APBS calculation is performed in vacuum for
the cores only, to obtain the Coulombic potential
due to cores, V+(r).

spill cores
to grid run APBS

core positions.pqr core charge density.dx core potential.dx
V+

Self-consistent approach



SCF iteration
part 1

run APBS,
ε = 1

core charge density.dx

total potential     
in vacuum.dx

V+ + V-
Self-consistent approach

electronic charge 
density (+ bkg).dx

run ONETEP 
iteration

remove 
background 

charge

electronic charge 
density.dx

total charge density.dx

run APBS,
ε = 80

total potential       
in solvent.dx
V+ + V- + Vdie

+



total potential     
in vacuum.dx

V+ + V-

Self-consistent approach

total potential       
in solvent.dx
V+ + V- + Vdie

electronic potential 
in vacuum.dx

V-

electronic potential       
in solvent.dx

V- + Vdie

unpad

-
core potential.dx

V+

-

SCF iteration
part 2

potential due to 
dielectric.dx

Vdie

-

potential due to 
dielectric.dx

Vdie

electronic potential       
in solvent.dx

V- + Vdie

unpad

to     
ONETEP

HOW???



How to inform ONETEP of the changes?

Self-consistent approach
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But what of the gradients???

We need to be able to calculate

... but            can be only obtained numerically.
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Current state of affairs

• Ignore the gradient discrepancy until we think of
something better.

• Backed up by the fact that V die is small compared
to V- and V+.
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Self-consistent approach



Further difficulties

• The density-dependent cavity changes shape between
iterations, because the density itself changes.
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Density-dependent cavity of Fattebert and Gygi

≈ 0.5 Å



Further difficulties

• The density-dependent cavity changes shape between
iterations, because the density itself changes.

• For now, to define the cavity, we are using the fixed
density obtained from a converged calculation in
vacuum.
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Further difficulties

• APBS is memory-hungry. Treating large systems
(proteins of several thousand atoms) at fine grid
spacings requires 40-80 GB of memory.

• APBS lacks a "proper" parallel implementation.

• There is a kludgy parallel mode for APBS, but it's Bad
and Wrong.

L [Å] RAM req'd

10 80 MB

20 640 MB

50 10 GB

100 80 GB

200 640 GB

Assuming 
fine grid 

spacing of
d=0.136 Å

(KE cutoff ≈780 eV)



Conclusions

• Capturing solvation effects is important, particularly
for biochemical applications.

• Implicit solvation models are computationally
cheaper than explicitly modelling the solvent, but
not necessarily easy to develop or to implement.

• Simple approach of correcting the in vacuo
calculation with a postprocessing step of solving the
PB equation for the frozen density appears to work
surprisingly well.

• ... for the simplest molecules we’ve studied so far.

• Some clever maths will be required to further the
advances towards a self-consistent approach.
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