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Kohn-Sham equations

[_%Vz + V;ﬁ} Ynko = EnkoVnke
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The origin of the O(N3) problem

* Physicists:
— Typically employ large basis sets of simple functions
e.g. plane waves
— Computational effort dominated by FFTs

— Asymptotic N3 scaling from orthogonality constraint
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The origin of the O(N3) problem

* Physicists:
— Typically employ large basis sets of simple functions
e.g. plane waves
— Computational effort dominated by FFTs

— Asymptotic N3 scaling from orthogonality constraint

e Chemists:

— Typically employ small basis sets of more complicated
functions e.g. contracted Gaussians

— Computational effort dominated by building the Fock
matrix
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Simplifications

[—%Vg + V;ﬁ} wnkcr — 5nk0¢nka
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Simplifications

[—%VQ -+ Vo'] wnka — Enkawnka

* No self-consistency
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Simplifications

[_%vz + V:| 7&nk — Enkwnk

* No self-consistency
* No spin
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Simplifications

[_%VQ + V] 77% — 5nwn
* No self-consistency
* No spin
* Sample Brillouin zone at I only
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Simplifications

V) = Z |Ok)Chnn = ZHijcjn = Cjnn
k J

* No self-consistency

* No spin

* Sample Brillouin zone at I only
* Localised orthogonal basis set
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Simplifications

|9n) = Z |Ok)Clon,. = Z H;icjp, = Cinén
k J

* No self-consistency
* No spin
* Sample Brillouin zone at I only
* Localised orthogonal basis set
* M basis functions - H is M x M matrix
Hij = (¢il (—3V2+ V) |¢5) = > cinenc,
— full diagonalization O(M3) n
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Simplifications

|9n) = Z |Ok)Clon,. = Z H;icjp, = Cinén
k J

* No self-consistency

* No spin

* Sample Brillouin zone at I only

* Localised orthogonal basis set
* M basis functions - H is M x M matrix
* N lowest states required
—> iterative diagonalization O(N*M)
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Total energy methods

* Energy of the Kohn-Sham system:

OCC

Engn
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Total energy methods

* Energy of the Kohn-Sham system:
all

F = anen

* Introduce occupation numbers f:

— 1 for occupied states
— 0 for unoccupied states
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Total energy methods

* Energy of the Kohn-Sham system:
all

F = anen

* Introduce occupation numbers f:
— 1 for occupied states

— 0 for unoccupied states

* Finite temperature: 1

kT

Su=f(€n) fe) = L+ exp (6_-&)
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Total energy methods

* Energy of the Kohn-Sham system:
all

E = anen

[e1 00 0 fi 0 0

0 E9 0 0 0 f2 0

E—tr|]l 0 0 &5 0 0 0 fs
N0 0 0 EN 0 0 0
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Off-diagonal representation

[ 0 0 o\ /fi 0 0 0\
0 e O 0 0 f» O 0
0 0 &5 0 0 0 fy 0

N0 0 0 -+ ey 00 0 - fv)

* Trace is invariant under similarity transformation:

= (¢iltn) = ﬂjzz%fnc;

E = tr(FH) Z
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Density matrix

* Fisthe density matrix
— F commutes with H (simultaneously diagonalizable)

— Trace of F is the number of electrons (sum of
occupation numbers)

— At zero temperature F is idempotent: F2 = F

* Solving the Schrodinger equation is equivalent to
finding the F that minimizes E subject to the
above conditions
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Nearsightedness

Hierse & Stechel, Phys. Rev. B 50, 17811 (1994)
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Nearsightedness

Hierse & Stechel, Phys. Rev. B 50, 17811 (1994)

1

Bond
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Nearsightedness

Hierse & Stechel, Phys. Rev. B 50, 17811 (1994)

TABLE I. Kohn-Sham energy errors for hydrocarbon sys-
tems, obtained from self-consistent iteration and/or orbital

transfer.

System AEs/bond How obtained
C-H, 0.555 meV sc iteration
C,oH22 0.661 meV sc iteration
Cquﬁ 0.703 meV sc iteration
C,Hy6 0.707 meV first guess

(transfer from C, H,)

Clezﬁ 0.725 meV first gucss

(transfer from C;H,¢)
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Nearsightedness

* Implication for the density matrix:
— In a local representation it is sparse
—i.e. Fj; = 0 for distant basis functions ¢, and ¢,
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Nearsightedness

* Implication for the density matrix:
— In a local representation it is sparse
—i.e. Fj; = 0 for distant basis functions ¢, and ¢,

* |n fact the density matrix decays exponentially:
Brouder et al., Phys. Rev. Lett. 98, 046402 (2007)
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Nearsightedness

* Implication for the density matrix:
— In a local representation it is sparse
—i.e. Fj; = 0 for distant basis functions ¢, and ¢,

* |n fact the density matrix decays exponentially:
Brouder et al., Phys. Rev. Lett. 98, 046402 (2007)

* Decay rate depends upon
— Band gap
— Basis quality
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Fermi operator expansion

Goedecker & Colombo, Phys. Rev. Lett. 73, 122 (1994)
Goedecker & Teter, Phys. Rev. B 51, 9455 (1995)
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Compatibility

e Need to find F that commutes with H

* Any matrix M always commutes with:
— The identity |
— ltselfi.e. M
— Any power of itself e.g. M2, M 3 etc.
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Compatibility

e Need to find F that commutes with H

* Any matrix M always commutes with:
— The identity |
— ltselfi.e. M
— Any power of itself e.g. M2, M 3 etc.

* Expand F as a polynomial in H i.e.
Fa~col +cHA+coH*+...+c,H"

— Coefficients are those from a power series expansion
of the Fermi-Dirac distribution

ONETEP Spring School 13 April 2010



Chebyshev polynomials

T,(x) = cos(narccos)
TO (33) = 1
T\ (x) = x
Ty(a) = 20T3(x) = Ty (x)

* Defined on [-1,1]
e Bounded between +1
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Chebyshev polynomials
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Chebyshev polynomials T (x) through Tig(x). Note that T, has j roots in the interval
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Chebyshev expansion

* Scale and shift the Hamiltonian so eigenvalues lie

on [-1,1]:
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FIG. 7. The Fermi distribution as obtained by a Chebyshev fit
of degree 40 in the case of a diamond structure. The band gap
Is In between the two vertical lines,
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Fermi operator expansion

* Region over which expansion changes from 0 to 1
is the energy resolution A¢ (gap)

* Smaller energy resolution requires higher order
expansion

e Use finite temperature distribution to avoid
Gibbs oscillation

* |n practice use error functions instead (decay
faster to 0 and 1 away from gap)

* Rational expansion also possible
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Divide and conquer

Yang, Phys. Rev. Lett. 66, 1438 (1991)
Yang & Lee, J. Chem. Phys. 103, 5674 (1995)
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Divide and conquer

* Consider subvolumes of the whole system
e Calculate contributions to the density (matrix)

BUFFER  CENTRAL  BUFFER
BUFFER CENTRAL  BUFFER
e o o olo h';iv-o s Qlio e o o
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Divide and conquer

e Trim the corners:
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Divide and conquer

 Combine the pieces:

weight 1

weight %5
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Density matrix minimization

McWeeny, Rev. Mod. Phys. 32, 335 (1960)
Li, Nunes & Vanderbilt, Phys. Rev. B 47, 10891 (1993)
Daw, Phys. Rev. B 47, 10895 (1993)

ONETEP Spring School 13 April 2010



Purifying transformation

y=3z"—21° = Ipy = y(xp)

1.5¢ -
1.0} |
0.5}
0.0}
051

05 00 05 1.0 1.5

ONETEP Spring School 13 April 2010



Purifying transformation

y=3z"—21° = Ipy = y(xp)
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Purifying transformation

y=3z"—21° = Ipy = y(xp)
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Purifying transformation

* Apply it to the density matrix:
= 3F7 — 2F;

* |teration converges to O or 1 as long as:
f, € (1—\/3 1+\/5)
n 2 02

* Converges without “flipping” if:

= [1—2\/3j 1+2\/§}
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Canonical purification

Palser & Manolopoulos, Phys. Rev. B 58, 12704 (1998)

H =
e Start with Hamiltonian
e Shift, invert and scale so 1
eigenvalues lie in [0,1]
* Apply purification H 1 y
transformation until i

convergence achieved




Li-Nunes-Vanderbilt

* Define a purified density matrix P
P =3F*—2F"

* Minimize E = tr(PH) with respect to F

* Truncate F to obtain linear scaling
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Li-Nunes-Vanderbilt

1.2 1 1 1 | ] i L |
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Orbital minimization

Mauri et al., Phys. Rev. B 47,9973 (1993)
Ordejon et al., Phys. Rev. B 48, 14646 (1993)
Mauri & Galli, Phys. Rev. B 50, 4316 (1994)
Ordejon et al., Phys. Rev. B 51, 1456 (1995)
Kim et al., Phys. Rev. B 52, 1640 (1995)
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Orbital minimization

e Works with Wannier functions rather than
density matrix

* Imposes the orthogonality constraint by

expanding the inverse overlap matrix about the

identity:
Cht 71— (1-295)"

[+ (I =9+ —-S5)°+...

21 — S

&
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Orbital minimization

* Leads to a generalized functional:

—QLLC Hcjn, LLC H, Jchkmckn

—where H' = H — ul

* Quartic in the coefficients C
* Solve for localized orbitals to obtain linear scaling
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Orbital minimization

y=2"2 =)
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Orbital minimization

* With localization constraints:
— Large number of iterations required
— Atom-centred Wannier functions can break symmetry
— Local minimum so runaway solutions possible
— Problems conserving electron number

Yang, Phys. Rev. B 56, 9294 (1997)
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More information

Stefan Goedecker
“Linear scaling electronic structure methods”
Rev. Mod. Phys. 71, 1085 (1999)
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