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Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays ScalingLinear Scaling DFT in ONETEPGoals:Construction of sparse Hamiltonian and Overlap matrices inlinear-scaling computational e�ortLinear-scaling optimisation of density matrix in insulatorsIn-situ optimisation of minimal set of localised functionsSystematic convergence of ET with respect to size of basis (asfor plane-waves)Highly e�cient parallelisation: Speedup on P processors toremain ∝ P up to large P



Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays ScalingNested Loop OptimisationOuter Loop: Optimise NGWFs1 Initialise {φα (r)} to atomic orbitals2 Evaluate minKE (K;{φα})Inner Loop: Optimise Density Kernel1 Calculate E = TrK.S2 Calculate ∂E/∂Kαβ & search direction3 Take LNV CG step4 Exit when K converged, else go to (1)3 Calculate NGWF gradient ∂E/∂φα (r) & search direction4 Take NGWF CG step5 Exit when NGWFs converged, else go to (2)



Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays ScalingImplementationStandard F90MPI communicationsLibraries required for:FFTs (FFTW, MKL, etc)linear-algebra (LAPACK)Optionally, parallel linear algebra (ScaLAPACK)4 Authors, further 5-10 contributors, > 100,000 lines of codeHence require:Standardisation of coding styleClear structure & commentingConsistent standards for internal data representation



Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays ScalingInternal Data FormatsSets of functionsNGWFs {φα} as psinc function coe�s: Represented by a FUNCTION_BASIS,indexing psinc coe�cients stored in an array of reals.Nonlocal Projectors {χi} in reciprocal space: Represented by aFUNCTION_BASIS and a PROJECTOR_SET storing reciprocal space projectors.Sparse Matriceseg Sαβ = 〈φα |φβ 〉 Sαβ 6= 0 only if φα(r) and φβ (r) overlap.Block-indexed sparse matrices, of pre-determined sparsity patterns (eg K ,S , H , KS , KSK ...): Represented by a SPAM3 type.Whole Simulation Cell grid arraysUsed to represent density, potential etc, Distributed over parallel nodes inslabs.
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Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays ScalingSpace-Filling Curve
Orders atoms according to proximity, for distribution over nodes
space_filling_curve: T by default.Turn it o� if you think you can do better by hand (unlikely!)



Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays ScalingSparse MatricesSFC ensures that the nonzero elements of sparse matrices areclustered near the diagonal.Density of nonzero elements in ∼ 4000 atom systems
C Nanotube DNA Strand GaAs Nanorod Si CrystalNeed to make matrix algebra e�cient, scalable and �exible overwide range of matrix �lling



Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays ScalingSparse MatricesSparse algebra system works by dividing matrices by rows andcolumns into `segments'.SegmentRows associated with all atoms of node j in columns associatedwith atoms of node i . Stored on node i .Segments are `dense' if they have nonzero element �lling fraction
η > ηc . Controlled by dense_threshold - default 0.3.Segments are `sparse' if 0< η ≤ ηc . Sparse segments divided into`blocks'BlockRows associated with atom J in columns associated with atom I .Nonzero blocks within segment (j , i) on node i are listed in `index'Segments with η = 0 are `blank' and are ignored.
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Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays ScalingSparse Matrix Algebra
Example: imagine a linear propane-like molecule:
Distribute atoms over 3 cores...4 NGWFs per C, 1 per H ⇒7,6,7 NGWFs on nodes 0,1,2



Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays ScalingSparse Matrix AlgebraConstruct (dense) overlap matrix for these NGWFs with O(N2)nonzero elements.
NB: unrepresentatively small NGWF spheres!



Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays ScalingSparse Matrix AlgebraApply sparsity: remove elements αβ where φα and φβ do notoverlap
NB: unrepresentatively small NGWF spheres!



Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays ScalingSparse Matrix AlgebraApply segmentation: segments with high �lling are dense, segmentswith zero �lling are blank
NB: unrepresentatively small NGWF spheres!



Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays ScalingSparse Matrix Algebra
Product of sparse matrices A, B:C= A.B

By elements:Cα
β =∑

γ
AαγBγβOr equivalently by segments:Cij = ∑k Aik .BkjNode j stores columns Cij , so parts of Aik must be sent from nodek to node j . However, if Bkj has no nonzero elements, then Aik .Bkjdoes not contribute to Cij , so node k need not send anything tonode j .Principle: Minimise communication! Only send nonzeroelements and index entries which contribute to Cij



Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays ScalingSparse Matrix AlgebraSegmentation allows speedup in two ways:Minimisation of communication and indexing overheadDense matrix algebra (LAPACK) used for dense segments

(comparing segmented and nonsegmented code, both minimalcomms)
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Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays ScalingNGWFsNGWFs φα(r) represented withbasis of `psinc' functions on gridspeci�ed by Ecut
φα (r) = ∑

µ
Di (r)ciαwhere Di (r) = 1N ∑p e ikp(r−ri ) NB: zero at all grid points rj 6=i !Psinc coe�cients stored in `parallepipeddomains' (ppds): little boxes of grid points.NGWFs initialised to Atomic Orbital-like form, then optimised



Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays ScalingManaging Functions in O(N)For a general set of functions {fα(r)} distributed over nodesAlmost all operations involving fα 's can be put in one of thefollowing forms:Aα(r) = ∑
β
Mαβ fβ (r) function sumOαβ =
〈fα |Ô|fβ〉 integralRα

β = ∑
γ
PαγQγβ sparse algebra



Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays ScalingExamples (1) NGWFsFor the set of NGWFs {φα(r)}, examples includen(r) = ∑
α

φα(r)∑
β
Kαβ φα(r) densityTαβ =

〈

φα |−
12∇2|φβ

〉 kinetic energyKαβ = 3LαγSγδ Lδβ −2LαγSγδ Lδε Sεζ Lζβ DM puri�cation



Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays ScalingExamples (2) Nonlocal ProjectorsFor the set of Nonlocal pseudopotential projectors {χi (r)},examples of these methods include
∂Enl

∂φα(r) = ∑i ∑
β

(

〈χi |φβ 〉KαβDi )

χi (r) nonlocal psp gradientPα i = 〈φα |χi 〉 ; Rjβ =
〈

χj |φβ
〉 `s-p',`p-s' overlapsV nl

αβ = ∑i Pα iRiβDi nonlocal matrix



Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays ScalingFFT BoxMoving `FFT box' centred on φα � allows use of reciprocal-spacemethodsIntegrals and function sums are O(1) per function:Functions are strictly localised
⇒each one overlaps O(1) othersAll calculations performed in `FFT box' centered onφα
⇒e�ort of operation does not grow with system sizeHence whole operation, for O(N) functions, is O(N).



Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays ScalingBatch SystemHowever, φα will overlap φβ 's stored on other nodes.To avoid recommunicating φβ more than required, calculate abatch of FFTboxes, eg Aα(r) for α = {11,12...,20} at a timeAα(r) = ∑
β
Mαβ fβ (r) [re-uses fβ (r) up to Nbatch times]Batch sizes as large as possible given available memory.Routines designed to hide communication behind computationAsynchronous receive operations avoid synchrony, whichemphasises ine�ciency due to load balancing
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Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays ScalingWhole-Cell ArraysDensity n(r), potential V (r) de�ned everywhere in cellAt worst O(N) memory to store on grid

Real space grids eg n(r) parallelised over `12' slabs: n( : , : , s i3 : e i3 ) on node i .Recip space grids eg n(G) parallelised over `23' slabs: n(s i1 : e i1 , : , : ) on node i .Simpli�es whole-cell FFTs.



Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays ScalingWhole-Cell Arrays
Least well-behaved aspect when scaling to large P!Forces synchronisation between nodes and emphasises load balanceTherefore, minimise use of:Extraction of FFT boxes from whole-cell arrays (eg localpotential)Deposition of FFT boxes to whole-cell arrays (eg density)Whole-Cell FFTs (O(Ngrid lnNgrid)



Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays ScalingExample: Calculating the Charge Density
ρ(r) = ∑

α
ρα (r) = ∑

α
φα (r)∑

β
Kαβ φβ (r)Loop over batches of NGWFs φα on this node(batch size controlled by density_batch_size)Loop over all NGWFs φβ for which Sαβ 6= 0 in this batchRequest φβ ppds from other nodes if not localRespond to incoming requests for φβ ppdsReceive φβ ppds from other nodes if not localAccumulate ∑β Kαβ φβ (r) in coarse FFTbox for each φαLoop over φα in batchCopy φα(r) from PPDs to coarse FFTboxFourier interpolate row and column FFTboxes to �ne gridTake product ρα(r) = (φα(r)) .(∑β Kαβ φβ (r))Deposit ρα(r) FFTbox to �ne grid ρ(r) whole-cell array
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Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays ScalingScaling with N and PSeveral ways of investigating scaling:Fixed computational resources...how big can I go?increase N at �xed PFixed problem size... how welldoes it scale?increase P at �xed NScalable problem, scalableresources... can I simulate anarbitrarily large system infeasible wall-clock time?(`time-to-science')increase P and N at �xedratio N/P

Random B-DNA: Scalable,non-periodic



Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays ScalingScaling with System Size

Figure: Wall clock time for total energy calculation on random DNAsequences. Inset: number of iterations for NGWF convergence.



Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays ScalingScaling with Number of Processors

Figure: Wall clock time (red, left scale) and speedup over 64 cores(blue,right scale) for a total energy calculation of 64 base-pairs of DNA(4182 atoms) on varying number of cores.



Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays ScalingScaling at Constant Atoms per Processor

Figure: Wall clock time for 16-128bp DNA on 32-256 cores, keepingN/P constant. Inset: number of iterations for NGWF convergence.



Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays ScalingConclusion
Highly E�cient Parallelisation - avoid synchronisation, hidecommunication behind calculationRe-usable, extensible algorithms for accumulation of functionsums, integrals, etc in NGWF basisScaling of calculations of tens of thousands of atoms on up tothousands of nodes
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