Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays Scaling

Parallel Implementation of the ONETEP Approach J

Nicholas D.M. Hine

Thomas Young Centre
Department of Materials and Department of Physics
Imperial College London

15th April 2010

@ Goals for Implementation

© Sparse Matrices
© NGWFs

@ Whole-Cell Arrays

© Scaling

@ Goals for Implementation

© Sparse Matrices
© NGWFs
@ Whole-Cell Arrays

© Scaling

Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays Scaling

Linear Scaling DFT in ONETEP

Goals:

@ Construction of sparse Hamiltonian and Overlap matrices in
linear-scaling computational effort

@ Linear-scaling optimisation of density matrix in insulators

@ In-situ optimisation of minimal set of localised functions

@ Systematic convergence of Et with respect to size of basis (as
for plane-waves)

@ Highly efficient parallelisation: Speedup on P processors to
remain [J P up to large P

Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays Scaling

Nested Loop Optimisation

Outer Loop: Optimise NGWFs

Q Initialise {@y(r)} to atomic orbitals
© Evaluate ming E(K; {¢ })

Inner Loop: Optimise Density Kernel

O Calculate E =TrK.S
@ Calculate dE/0K*P & search direction
© Take LNV CG step

O Exit when K converged, else go to (1)

© Calculate NGWF gradient dE/d@q(r) & search direction
© Take NGWF CG step
© Exit when NGWFs converged, else go to (2)

Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays

Implementation

@ Standard F90
@ MPI communications
@ Libraries required for:

e FFTs (FFTW, MKL, etc)
¢ linear-algebra (LAPACK)
o Optionally, parallel linear algebra (ScaLAPACK)

@ 4 Authors, further 5-10 contributors, > 100,000 lines of code
Hence require:

¢ Standardisation of coding style
o Clear structure & commenting
s Consistent standards for internal data representation

Scaling

Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays Scaling

Internal Data Formats

Sets of functions

NGWFs {@y} as psinc function coeffs: Represented by a FUNCTION_BASIS,
indexing psinc coefficients stored in an array of reals.

Nonlocal Projectors {x;} in reciprocal space: Represented by a
FUNCTION_BASIS and a PROJECTOR_SET storing reciprocal space projectors.

Sparse Matrices

eg Sap = (@) Sap 7# 0 only if @ (r) and gs(r) overlap.
Block-indexed sparse matrices, of pre-determined sparsity patterns (eg K,
S, H, KS, KSK...): Represented by a spam3 type.

Whole Simulation Cell grid arrays

Used to represent density, potential etc, Distributed over parallel nodes in
slabs.

@ Goals for Implementation

© Sparse Matrices
© NGWFs
@ Whole-Cell Arrays

© Scaling

Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays

Space-Filling Curve

Orders atoms according to proximity, for distribution over nodes

without SF curve with SF curv

space_filling_curve: T by default.
Turn it off if you think you can do better by hand (unlikely!)

Scaling

Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays Scaling

Sparse Matrices

SFC ensures that the nonzero elements of sparse matrices are
clustered near the diagonal.

Density of nonzero elements in ~ 4000 atom systems
ul l|.|. -

C Nanotube

Need to make matrix algebra efficient, scalable and flexible over
wide range of matrix filling

Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays Scaling

Sparse Matrices

Sparse algebra system works by dividing matrices by rows and
columns into ‘segments’.

Segment

Rows associated with all atoms of node j in columns associated
with atoms of node /. Stored on node i.

Segments are ‘dense’ if they have nonzero element filling fraction
N > nc. Controlled by dense_threshold - default 0.3.

Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays Scaling

Sparse Matrices

Sparse algebra system works by dividing matrices by rows and
columns into ‘segments’.

Segment

Rows associated with all atoms of node j in columns associated
with atoms of node /. Stored on node i.

Segments are ‘dense’ if they have nonzero element filling fraction
n > nc. Controlled by dense_threshold - default 0.3.
Segments are ‘sparse’ if 0 < n < n.. Sparse segments divided into
‘blocks’

Rows associated with atom J in columns associated with atom /.
Nonzero blocks within segment (j,/) on node i are listed in ‘index’

Segments with 1 =0 are ‘blank’ and are ignored.

Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays Scaling

Sparse Matrix Algebra

Example |mag|ne a ||near propane-like molecule:

‘TTI“

Distribute atoms over 3 cores...
4 NGWEFs per C, 1 per H =7,6,7 NGWFs on nodes 0,1,2

Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays Scaling

Sparse Matrix Algebra

Construct (dense) overlap matrix for these NGWFs with O(N?)
nonzero elements.

atom HiHH: C. H, C. Hs C; HHH,

node 0 1 2
o cooploaaoiol ¢ oolio
@ cooplcaaciolcools)
a ceoplcaccphacope
a cooplcacappocoge
Q coopicaaopboooan
fa [SYeYe] S(CYETETe] SEeTeXnla o)
a cooplooooplooolD
a cooplcacoppocoRe
a cooplcacoppootEe
a GOORICaaolooomd
dpppocopoocoRpoooRe
cpepoocopoacoepecople
cpppocopoacoepocople
gooboochioooooboooole
cblobeocoblcacekbocelie
colbpeccbleacakbacalio
cplppecopicocoidpodope

NB: unrepresentatively small NGWF spheres!

Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays

Sparse Matrix Algebra

Apply sparsity: remove elements a3 where @ and ¢ do not
overlap

atom HiHH: C. H, C. Hs C; HHH,
node 0 1 2

000 o0

6

000 OO

[oos

Scaling

Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays Scaling

Sparse Matrix Algebra

Apply segmentation: segments with high filling are dense, segments
with zero filling are blank

atom HiHH: C. H, C. Hs C; HHH,
node 0 1 2

Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays Scaling

Sparse Matrix Algebra

c A B By elements:
1l -k ,—'l |
REURY EEEA . C% =5 A™B
1 I:l}u,..“\ 1 ”‘““'*{l:l ! | B w
1’7—" ,‘f’l‘; }ﬂmu.
| =

Meols

Or equivalently by segments:
Product of sparse matrices A, B: d y by seg

Node j stores columns Cj;, so parts of Aj must be sent from node
k to node j. However, if By; has no nonzero elements, then Aj.By;
does not contribute to Cjj, so node k need not send anything to
node j.

Principle: Minimise communication! Only send nonzero
elements and index entries which contribute to C;;

Goals for Implementation

Sparse Matrices

Sparse Matrix Algebra

NGWFs

Segmentation allows speedup in two ways:

Whole-Cell Arrays

@ Minimisation of communication and indexing overhead
@ Dense matrix algebra (LAPACK) used for dense segments

(comp

Total Sparse Product Time (s)

=1

Total Sparse Product Time (5)

500, T T T T — 1400 T T T
C Nanotube o b DNA Strand
N. a FEe 1000*\.\ Non-Segmented?
300—\ / £ a0
= \ |
L L 1 % eoof \ L
W™ —Segmented g \7,7—'-"'Sbgmenled
- 400r
100+ g il
= 200F
3
il L L L L = 0 L L L L
00 02 04 06 08 10 00 02 04 06 08 10
Segment Density Threshold 1 Segment Density Threshold 1
2000, T T T T — 6000 T T T T
\ Non-Segmented | & 5000/} %
500F§ A & Si Crystal
\ = EE
000 *"" “Segmented E 3000 L 1l
8 P e Non-Segmented
£ 20007 e
500F i o egmented
wGaAs Nanorod = 1000t
LT o g g & ol o o
8.0 02 04 06 08 10 00 02 04 06 08 10

Segment Density Threshold 1

Segment Density Threshold 1

aring segmented and nonsegmented code, both minimal

Y

Scaling

@ Goals for Implementation
© Sparse Matrices
© NGWFs

@ Whole-Cell Arrays

© Scaling

Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays

NGWFs

NGWFs @y (r) represented with P
basis of ‘psinc’ functions on grid P
specified by Ec.t

where Dj(r

()= 3 Di(r)cia
1]
1
N

Psinc coefficients stored in ‘parallepiped

’kp(r ri) v . .
z NB: zero at all grid points r;;!
P

domains’ (ppds): little boxes of grid points.

Scaling

Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays

Managing Functions in O(N)

For a general set of functions {fy(r)} distributed over nodes
Almost all operations involving fy's can be put in one of the
following forms:

Aq(r) = z M“Bfﬁ(r) function sum
B

Oup = <fg|b|fﬁ> integral

Raﬁ = Z P“VQW sparse algebra
y

Scaling

Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays

Examples (1) NGWFs

For the set of NGWFs {@u(r)}, examples include

n(r) = ; @ (r) % K% (r) density

1
Tap = <(pa| — §D2|(pﬁ> kinetic energy

KO =3L955 L% —219YS51%S, ¥ DM purification

Scaling

Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays

Examples (2) Nonlocal Projectors

For the set of Nonlocal pseudopotential projectors {x;(r)},
examples of these methods include

OEn (Xilgp) K P _
0pa(r) Z% (D; i(r) nonlocal psp gradient
Pai=(ulxi): Rp= (Xil%p) ‘s-p’,'p-s’ overlaps

nl __ .
Vap = Z D nonlocal matrix

Scaling

Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays Scaling

FFT Box

Moving ‘FFT box’ centred on ¢ — allows use of reciprocal-space
methods
Integrals and function sums are O(1) per function:

@ Functions are strictly localised
=-each one overlaps O(1) others

@ All calculations performed in ‘FFT box’ centered ongy
=-effort of operation does not grow with system size

Hence whole operation, for O(N) functions, is O(N).

;;;;;

NGWE Spheres

Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays Scaling

Batch System

However, @ will overlap ¢’s stored on other nodes.

@ To avoid recommunicating @ more than required, calculate a
batch of FFTboxes, eg Aq(r) for o = {11,12...,20} at a time

Aq(r) = Z /\/I"Bfﬁ(r) [re-uses fg(r) up to Npatch times]
B
@ Batch sizes as large as possible given available memory.
@ Routines designed to hide communication behind computation

@ Asynchronous receive operations avoid synchrony, which
emphasises inefficiency due to load balancing

@ Goals for Implementation

© Sparse Matrices
© NGWFs
@ Whole-Cell Arrays

© Scaling

Goals for Implementation Sparse Matrices NGWFs

Whole-Cell Arrays

Density n(r), potential V(r) defined everywhere in cell
At worst O(N) memory to store on grid

Whole-Cell Arrays

- 7 7
s 2 %
00
@
e o Yoo
[
e %% o
® o
L)
1 2 3 4 5 6

Real space grids eg n(r) parallelised over ‘12" slabs: n(:,:, s} : e}) on node i.

Scaling

Recip space grids eg n(G) parallelised over ‘23’ slabs: n(s{ : e{ ,7,1) on node /.

Simplifies whole-cell FFTs.

Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays Scaling

Whole-Cell Arrays

Deposit
Deposit FFT box

ae T I

' I O
- 1
11

L]] BT 3%
PPDs \/ [CER Y DR e o S DR
FFT box k/
Extract
PPDs Simulation cell
Extract
FFT box

e e

ar
by ol N

Least well-behaved aspect when scaling to large P!
Forces synchronisation between nodes and emphasises load balance

Therefore, minimise use of:
@ Extraction of FFT boxes from whole-cell arrays (eg local

potential)
@ Deposition of FFT boxes to whole-cell arrays (eg density)

@ Whole-Cell FFTs (O(Ngrig In Ngriq)

Goals for Implementation Sparse Matrices NGWFs

Example: Calculating the Charge Density

p() =5 pa(r) =Y Gulr) % K%Pgp(r)

@ Loop over batches of NGWFs ¢y on this node
(batch size controlled by density_batch_size)

@ Loop over all NGWFs ¢ for which Sy # 0 in this batch
Request @ ppds from other nodes if not local

Respond to incoming requests for ¢ ppds
Receive @ ppds from other nodes if not local

Accumulate 3 g Kaﬁ(pﬁ(r) in coarse FFTbox for each @y
@ Loop over ¢y in batch

¢ © ¢ ¢

@ Copy @y(r) from PPDs to coarse FFTbox
@ Fourier interpolate row and column FFTboxes to fine grid

o Take product pa(r) = (@u(r)). (zﬁ K“B(pg(r))
@ Deposit pg(r) FFTbox to fine grid p(r) whole-cell array

Whole-Cell Arrays

Scaling

fa(r) %K“”m(r)

— Vi \\
@) [O%
- P K/)

¢ Interpolate J,

\j Multiply /

————

[
|
|
-

Deposit

@ Goals for Implementation

© Sparse Matrices
© NGWFs
@ Whole-Cell Arrays

© Scaling

Goals for Implementation Sparse Matrices

Scaling with N and P

Several ways of investigating scaling:
o Fixed computational resources...
how big can | go?

o increase N at fixed P

o Fixed problem size... how well
does it scale?

o increase P at fixed N

@ Scalable problem, scalable
resources... can | simulate an
arbitrarily large system in
feasible wall-clock time?
(‘time-to-science’)

@ increase P and N at fixed
ratio N/ P

NGWFs Whole-Cell Arrays Scaling

Random B-DNA: Scalable,
non-periodic

Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays Scaling

Scaling with System Size

/\16 T T T T T T T

= ’g24;‘ L 1 ‘;l

g1z

S12/ie

(&) Lo1eE

810* 0 64 12%192256

l |

c 8f

o) |

o 61

E L

= 4

T o)

5 2| , »

— 0 ol 21 £ 21 . £ ; £
0 32 64 96 128 192 256

(2091) (4184) (6293) (8385) (12573) (16775)

Number of DNA base pairs (atoms)

Figure: Wall clock time for total energy calculation on random DNA
sequences. Inset: number of iterations for NGWF convergence.

Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays Scaling

Scaling with Number of Processors

10 — 5
= o 64 DNA base pairs 0
‘0-; \ ideal speedup 9
o 8r 148
o
3] <
o 6 13 ¢
5 S
o4 i
£ 4 2 g_
- F
% 2r 11 8_
kS N

0 1 " | L | L | 0
0 64 128 192 256

Number of cores, P

Figure: Wall clock time (red, left scale) and speedup over 64 cores
(blue,right scale) for a total energy calculation of 64 base-pairs of DNA
(4182 atoms) on varying number of cores.

Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays Scaling

Scaling at Constant Atoms per Processor

10
_ 8 f
R |
[} L * i
E 6 o —— @
= oo
w 4r w2 T 1 ——
S | 5200 .
2F S 16" 17
L =14 | I ! 1]
0 | 0 64 128192256

N | '
0 64 128 192 256
| . ‘Numbel" of nod(-'T-s P

0 16 32 64 96 128
Number of base pairs

Figure: Wall clock time for 16-128bp DNA on 32-256 cores, keeping
N/P constant. Inset: number of iterations for NGWF convergence.

Goals for Implementation Sparse Matrices NGWFs Whole-Cell Arrays Scaling

Conclusion

@ Highly Efficient Parallelisation - avoid synchronisation, hide
communication behind calculation

@ Re-usable, extensible algorithms for accumulation of function
sums, integrals, etc in NGWF basis

@ Scaling of calculations of tens of thousands of atoms on up to
thousands of nodes

	Goals for Implementation
	Sparse Matrices
	NGWFs
	Whole-Cell Arrays
	Scaling

