# Towards the calculation of experimental spectra using O(N) DFT

Laura Ratcliff and Peter Haynes



Imperial College London

#### Aim

## Aim

#### The goal

The calculation of experimental spectra in ONETEP, such as EELS, x-ray and optical spectra.

#### Why the calculation of spectra is useful

- The prediction of experimental results
- Spatial decomposition of spectra to determine the origin of features
- The effect on spectra of making changes to the electronic structure

## Methods for calculating spectra

## Time-dependent density-functional theory (TDDFT)

- Good for finite systems
- Complications when applying to periodic systems

#### Many body perturbation theory and the GW method

- Good level of accuracy
- Applicable only to smaller systems

### Density-functional perturbation theory (DFPT)

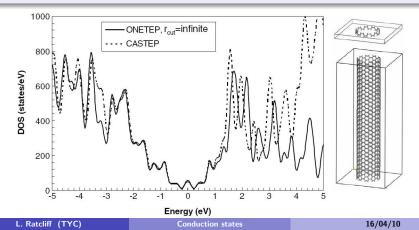
- Less accurate than the GW method
- But can be applied to larger systems

4 / 18

## Conduction state methods

#### Why do we need conduction states?

- For complete band structures and densities of states
- For correct spectra

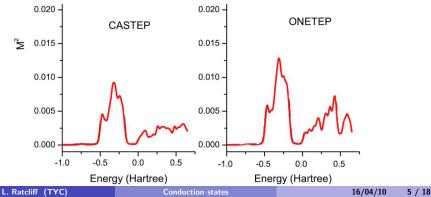


## Conduction state methods

#### Why do we need conduction states?

- For complete band structures and densities of states
- For correct spectra

Example x-ray absorption spectra in CASTEP and ONETEP:



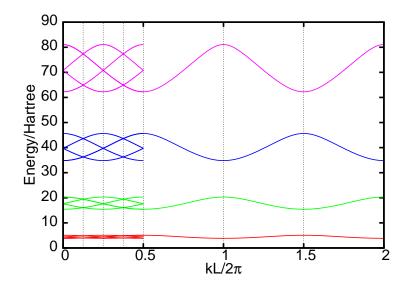
## The test program

#### What does it need to achieve?

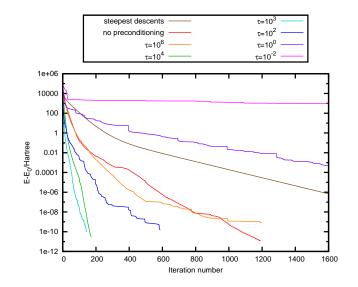
Imitate the main elements of ONETEP and be as simple as possible:

| ONETEP              | Test program            |
|---------------------|-------------------------|
| 3 dimensions        | 1 dimension             |
| conjugate gradients | conjugate gradients     |
| preconditioning     | preconditioning         |
| psinc basis         | B-spline basis          |
| localized NGWFs     | extended eigenstates    |
| DFT                 | Kronig-Penney potential |

## The test program



## The test program



## Conduction state methods

#### How can we add conduction states?

We want a second non self-consistent calculation following a ground state calculation.

#### The possible methods

- Folded spectrum method
- Shift invert
- Projectors

#### The requirements

- Accuracy
- Efficiency
- Scaling

## The folded spectrum method

The new eigenvalue equation

$$\left(\mathbf{H} - E_{ref}\mathbf{S}\right)\mathbf{S}^{-1}\left(\mathbf{H} - E_{ref}\mathbf{S}\right)\mathbf{x} = \left(\epsilon - E_{ref}\right)^2\mathbf{S}\mathbf{x}$$

#### Advantages

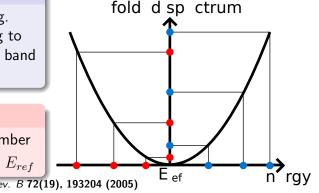
 Known to work e.g. using tight-binding to find Si conduction band minimum [1]

#### Disadvantages

- Poor condition number
- Need to find good  $E_{ref}$

[1] A.S. Martins et al. Phys. Rev. B 72(19), 193204 (2005)





## Shift invert

The new eigenvalue equation

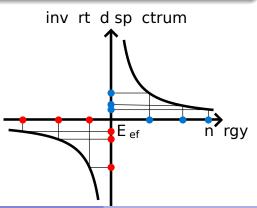
$$\mathbf{S} \left( \mathbf{H} - E_{ref} \mathbf{S} \right)^{-1} \mathbf{S} \mathbf{x} = \left( \frac{1}{\epsilon - E_{ref}} \right) \mathbf{S} \mathbf{x}$$

#### Advantages

• Better condition number

#### Disadvantages

- Need to find good  $E_{ref}$
- Small eigenvalues so rescaled
- 3 different variants



## Projectors

The density operator as a projection operator

where 
$$\hat{\rho} = \sum_{n} f_{n} |\psi_{n}\rangle \langle \psi_{n}|$$

## The new eigenvalue equation $(1 - \hat{\rho}) \hat{H} |\psi_n\rangle = 0$ if *n* is a valence state

$$H |\psi_n\rangle = 0$$
 If *n* is a valence state  
=  $\epsilon_n |\psi_n\rangle$  if *n* is a conduction state

#### Advantages

- No use of  $E_{ref}$
- Efficient?

#### Disadvantages

• Accuracy will be affected by valence calculation

## Results

#### Comparison of the methods

| Method          | Time taken (s) | Average Number of iterations |
|-----------------|----------------|------------------------------|
| Folded spectrum | 2.39           | 181.85                       |
| Shift invert 1  | 2.34           | 158.13                       |
| Shift invert 2  | 5.48           | 462.80                       |
| Shift invert 3  | 2.23           | 169.69                       |
| Projection      | 1.21           | 35.72                        |

Where each method has an absolute error of less than  $10^{-10}\,$ 

Shift invert equations:

$$\mathbf{S} \left( \mathbf{H} - E_{ref} \mathbf{S} \right)^{-1} \mathbf{S} \mathbf{x} = \left( \frac{1}{\epsilon - E_{ref}} \right) \mathbf{S} \mathbf{x}$$
(1)

$$-\mathbf{S}\left[\mathbf{H}\mathbf{S}^{-1}\mathbf{H} - 2E_{ref}\mathbf{H} + \left(E_{ref}^{2} + \mu^{2}\right)\mathbf{S}\right]^{-1}\mathbf{S}\mathbf{x} = -\left(\frac{1}{\epsilon - E_{ref}}\right)^{2}\mathbf{S}\mathbf{x}$$
(2)

$$-\mathbf{S} \left(\mathbf{H} - E_{ref} \mathbf{S}\right)^{-1} \mathbf{S} \mathbf{x} = -\left(\frac{1}{\epsilon - E_{ref}}\right) \mathbf{S} \mathbf{x}$$
(3)

## What next?

#### ONETEP

In  $\ensuremath{\mathsf{ONETEP}}$  everything is represented in terms of the density matrix (DM), with a basis of NGWFs.

#### The test program

| ONETEP                              | Test program                           |
|-------------------------------------|----------------------------------------|
| 3 dimensions                        | 1 dimension                            |
| conjugate gradients preconditioning | conjugate gradients<br>preconditioning |
| psinc basis                         | B-spline basis                         |
| localized NGWFs                     | extended eigenstates                   |
| DFT                                 | Kronig-Penney potential                |

## NGWFs

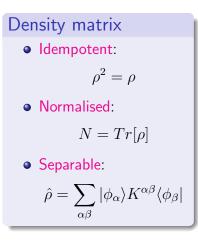
#### How can we add NGWFs to the test program?

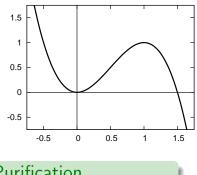
- We now want 2 sets of NGWFs
- We can modify the projection method to include NGWFs
- Represent them in terms of B-splines

#### New definitions

$$\hat{P} = \sum_{n=1}^{N} |\psi_n\rangle \langle\psi_n| = \sum_{\alpha\beta} |\phi_\alpha\rangle K^{\alpha\beta} \langle\phi_\beta|$$
$$\hat{Q} = \sum_{n=N+1}^{M} |\psi_n\rangle \langle\psi_n| = \sum_{\alpha\beta} |\chi_\alpha\rangle L^{\alpha\beta} \langle\chi_\beta|$$

## Optimizing the new density kernel





## Purification transformation

$$\rho_{k+1} = 3\rho_k^2 - 2\rho_k^3$$

## The new scheme

#### 1) Optimize the kernel for fixed NGWFs

- Project the Hamiltonian using  $1 \hat{P}$ , and shift by some reference energy so that all conduction states are lower in energy
- Use PM to get the conduction DM

#### 2) Optimize the NGWFs for a fixed kernel:

- Minimize the energy  $E = Tr[\hat{Q}\hat{H}]$  wrt the conduction NGWFs
- Use the projected Hamiltonian to stay in conduction space
- Use the LNV purification method to impose idempotency

#### 3) Repeat

...until converged

L. Ratcliff (TYC)

## Summary and future work

#### What I've done so far

- Created a 1D test program with a localised basis set and an efficient energy minimization scheme
- Looked at 5 different methods for calculating conduction states
- Implemented a density matrix formalism with optimized NGWFs

#### What I still have left to do...

- Consider the effects of localization and truncation
- Implement the best conduction state method in ONETEP
- Add the calculation of theoretical spectra

#### The end!