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QOutline
1. Kohn-Sham DFT calculations

* Direct energy minimisation versus density mixing
* Using the density matrix to achieve linear-scaling
2. ONETEP scheme: density kernel and NGWFs
* Density matrix idempotency and normalisation conditions
3. Linear-scaling functionals for density matrix optimisation
* Penalty, LNV, PM
4. Optimisation of density kernel
* Density kernel gradients, tensor properties
5. Optimisation of NGWFs
* NGWEF gradients, preconditioning schemes
6. Overall ONETEP calculation scheme
* |[nitialisation of density kernel and NGWFs

* Flowchart, input keywords

ONETEP spring school, 13-16 April 2010



Density Functional Theory (DFT)

*Electronic density

'n,(rl) :N/---./\lIJ(I'lSl?XQ?---?XN)lIJ*(rl.‘§1?X2?---?XN)(J{.?lfb{g---XN

*Hohenberg-Kohn
E[n] = Exin[n] + Eext[n] + Eeeln]

*Kohn-Sham |
E[ﬂ'] - Z<¢?‘ - §v2‘¢?> + Bext [ﬂ] + Ecoul [ﬂf] + Eﬁ:c[ﬂ]
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Non-interacting electrons Density of interacting electrons
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Self-consistency

 Variational principle

OE[Wi}] _
&pj _ » * Eigenvalue equation for
molecular orbitals (bands)

* Constraint

(Yk|thn) = Ok H|vpy) = en|tn)

* But the Hamiltonian operator
depends on the molecular orbitals

H{4")] [p™D) = el Oy
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Achieving self-consistency

Direct energy minimisation Diagonalisation and density mixing
N
[Calculate energy I Solve (diagonalise Hamiltonian)
E® — g[{y® A
[{¢? }] |: £v2 + Vet [n](r)] ’l,b,:(erl)(r) _ gi(PJrl),(’bi(PJrl)(r)
v : ’
Vary orbitals ‘l: Increase
WY = (9P} + 50 Build density pbyl
So that , _ (p+1)
EO+D < B W) =3 Sl P

Increase

pby1 Mix with previous densities

n(r) = PR 1) 4 PPy 4

Are

EetD) ~ g (P} ~ (9P
within tolerance?

Are

Bt ~ g (P} = (v
within tolerance?

C finished ) (' finished )
e Direct search for well-defined minimum
* Discontinuous changes

* Hamiltonian search (indirect)
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Function minimisation

* |terative procedures
* Need the value of the function and its gradient at each step

* Converge to local minima

STEEPEST DESCENTS CONJUGATE GRADIENT

2 &

* Moves always downbhill * Converges in N steps for N-
dimensional quadratic function

* Robust but may need very

large number of iterations * |In practice very efficient even
for non-quadratic functions

ONETEP spring school, 13-16 April 2010



Cubic-scaling computational cost of DFT

60 !

G + %))
= (=] o=
| | |

Total time (hours)
S
|

Calculation run on 96 cores
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Kohn-Sham DFT calculation bottlenecks

(Build enrgy and ) 4 )
Orth lit : :
Computational Hamiltonian rnosenaty alag(.)l:a“.se
) = 5. amiltonian
bottlenecks H, E[n] (@bzhbgi ij matrix 3
2 O(N O(N
Csowy ) (o (V?)
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Density matrix localisation

Nearsightedness of electronic matter
W. Kohn, Phys. Rev. Lett. 76, 3168 (1996); E. Prodan and W. Kohn, P.N.A.S. 102 11635 (2005)

In systems with a band gap:

pr,r') ~e Pl 50 as |r—r'| = oo

(I'ake advantage of this locality condition to make )
the density matrix contain a linear amount of data

Truncate exponential “tail”, impose:

p(r,r') =0 when |r—1'|> roy

- J
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One-particle density matrix in DFT

» Operator representation

0 = Z fn|¢n)(¢n|

* Position representation

(r|plr') = Z frtn(r

e Conditions

* Idempotency (from orbital orthonormality and occupancies 1 or 0)
p*(r,r') = f p(r,e")p(e”, ¥ )de" = [ (0)y (x) = > fathn (£)¢5, (') = p(r,r')

* Normalisation (preserving the number of electrons)

] = [ p(e)de = [ fusn@i ) dr =Y fu [ @ Pdr =Y fu =N,

ONETEP spring school, 13-16 April 2010

10



Energy expressions

e With orbitals

Bl =Y / i (1) (—%VQ) ;i (r) dr+ f V;Xt(r)fn,(r)err% f f n(r)_ng")drdr’JrEm[n]

r
= Z [i(r) [

e With density matrix

E[p]:/ {——Vl.fpr r] dr—{—/ Vext (£)n(r)dr+—= .//”‘ r’\ drdr +E[n]
r_

= Z fii(e)i(r)  n(r) = p(r,r)
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Self-consistency

H[{pPY] [op D) = @01+ therefore H[{pP] = Zg PD) |y (DY (o (D)

When \w = |9 ”H the H and p commute {ﬁ[{%@) 1 ﬁ[{%@ }]} -

Conditions

* |[dempotency
pPP=p e fn=00rl

* Normalisation

N, =2 tr[p] =2 Z In (spin-unpolarised case)
T
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Calculation bottlenecks with the density matrix

Orbitals

{1}

Density matrix

p(r,r') = Z fithi(r) ] (r)

Minimise E w.r.t.:

4 Bui ) [Orthogonality/ A fldempotency\
: uild -
Computational solve Hamiltonian o .
bottleneck E[n | pr=p
orHenects [ g (Wilj) = 0y 3
> O(N9) 3 O(N7)
\ y O(N?) - /
\_ /
n(r) =2 1i()F n(r) = p(r )
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Linear-scaling DFT using the density matrix

|I)

Truncate exponential “tail”, impose:

p(r,t) =0 when |r—1'| > rey

The density matrix

p(r, 1) anwn (r)

pr,r') = Pa(r) KV g(r)
af

K matrix made sparse by truncation

is expanded in non-orthogonal localised functions:

sparse matrix

SandH interms of {¢,} also sparse

Optimise energy with respect to K using algorithms
that include only sparse matrix multiplications

e Sparse matrix multiplications can be linear-scaling
if the sparsity is suitably exploited
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ONETEP aims for linear-scaling with high accuracy

The {®a} are not fixed, but are optimised in situ, (in addition to K)

,O(I‘, I‘/) = Z Inlts (I‘) ’L,f’f/‘.ﬁ,(f") = Z Oa( ) K7 ( )
n a3
Molecular orbitals Non-orthogonal
(MOs) Generalised Wannier

Functions (NGWFs)
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Density matrix in terms of NGWFs

'l,btn, (I") — Qf’a (I‘) Mﬂﬂ Sap = (bal®p)
T 1
MO  nGwF

p(r,¥') =" fathn(r) s (r') = palr) (Z M“naniﬁ) ¢5(r') = pa(r) K ¢} (r)

K% =% MS fuM}”

!\

. B ix Density kernel
P (r, ') = ¢o(r) KOS, KP 5 (r') !

tr[p] = K% S5, = tr[KS]
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Density matrix optimisation in ONETEP
[ Guess K3 and {¢,} ] FE = FK,{¢,}]

Iteratively
[ improve K°B ]<_ ’ Inncj:rl.oop:
Optimise total
(interacting)
N

e Outer loop:
Optimise total
(interacting)
energy E w.r.t. to

energy Ew.rt K
for fixed {¢,}
while imposing

K and {¢_} Yes idempotency
Iteratively and
improve {0} normalisation

No
Converged?

Yes
finished
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“Linear-scaling” functionals

* These are not DFT exchange and correlation functionals

* These are functionals of the density matrix which have been
designed so that when they are minimised:

* Produce the total energy

* Implicitly impose the required conditions (idempotency and
normalisation) on the density matrix that minimises them

* The aim of using these functionals is to work with expressions
which involve only (sparse) matrix multiplications

* We will examine the functionals implemented in ONETEP
* Penalty functional
e Li—Nunes-Vanderbilt (LNV) types of functionals

* Palser-Manolopoulos approach (not a functional)
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Penalty functional

Plp] = tx[(p* — p)*] = D _(f7 — fn)?

n

0.15| -
(a)

0.10 -

0.05F -

| | |
0'090.5 0.0 0.5 1.0 1.5

* Minimum (P=0) for idempotent density matrices
* Will always converge, regardless how non-idempotent the initial guess

e Constraints to preserve the total number of electrons are needed
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Penalty functional derivatives

Plp] = tx[(p®> — p)°1 = D _(fr — fn)”

n

* Assume a steepest descents “step” to update fk

 If we apply a quadratic approximation (near the minimum):

I r ‘
fnew = fold — 5(4f3.sd — 6f20 + 2fo1d) = 3f g — 2f 54

Purification transformation

R. McWeeny, Rev. Mod. Phys. 32(2), 335(1960)
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1.5
1.0
0.5
0.0
-0.5

Purification transformation

~~
[ob]
—
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1l

-0.5 0.0 05 1.0 1.5

> =11

-0.5 0.0 05 1.0 15

a9 r2 3
fnew — 'jfg,!d — fo;:,!d

Improves the idempotency of a nearly idempotent density matrix

Quadratic convergence. Example:

> fl2)=3x1.13-2x1.12=0.968
> i3 =3%0.9683% — 2x0.9682 = 0.997

> Etc..
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Forces occupancies in interval [0,1] (“weak” idempotency)

But, diverges if the initial occupancies are not within certain bounds
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Energy with penalty functional

P. D. Haynes and M. C. Payne, Phys. Rev. B 59, 12173 (1999)

Qlp] = E|p] + aP|p]

Energy (a.u.)

-0.5 0.0 0.5 1.0

Orbital occupancy

* Balance between minimum energy and minimum penalty
* Near-idempotency, depending on value of o
» Correction expression available for the energy

ONETEP spring school, 13-16 April 2010

22



Li-Nunes-Vanderbilt (LNV) functionals
p=30°—20°

X.-P. Li., R. W. Nunes and D. Vanderbilt, Phys. Rev. B 47, 10891 (1993),
M. S. Daw, Phys. Rev. B 47,10895 (1993)

Qi[o] = tr|p(H — p)]

J. M. Millam and G. E. Scuseria, J. Chem. Phys. 106, 5569 (1997)
Vylo] = tr[pH) + 4 (tr]o] — N,)

* Energy expressions containing a purification transformation of an
“auxiliary” density matrix

* Implicitly enforce idempotency
e Break down if purification transformation breaks
* Minimisation of band structure energy (equivalent to diagonalisation)

* But H also depends on p: Self-consistency by density mixing
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LNV functionals in ONETEP

exact_lnv = F

Ly[o] = E[p] + 4’ (tr[o] = Ne) = E[30° = 20°] + 4/’ (tr[0] — N)

exact Inv = T (default)

i~ (2] 5]

Ne

2 3
tr[302 — 203] (307 = 207)

* No density mixing, just direct minimisation of interacting energy
* Purification never allowed to break down

e Occupancy maxima and minima tracked

* Restored by penalty functional if out of safe range

* Electron number conserved without need to know the chemical potential

P. D. Haynes, C.-K. Skylaris, A. A. Mostofi, and M. C. Payne, J. Phys.: Condens. Matter 20, 294207 (2008)
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Canonical purification

1
O(x) 0-8
0.6
p=0(ul— H) 0.4
0.2
:Z_a,.;w?;(r)wi(r’) I ——— ChE X
O(pl—H)(r,¥')=...= Eﬂ(p—e? Vb, (v Z fihi (v)hi (") = p(r, 1)
1 f'{l’ if & < p
Tl o, ife > p

* One can approximate p as a polynomial expansion of H

* Can do this iteratively with a formula that resembles the purification
transformation:

A. H. Palser and D. E. Manolopoulos, Phys. Rev. B 58, 12704 (1998)
* Always converges

* No need to know
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Density kernel optimisation
(inner loop)

ONETEP spring school, 13-16 April 2010

Iteratively
improve KB

N
Converged?
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Derivatives with respect to the density kernel

Relationship between canonical Kohn-Sham orbitals and NGWFs

n(r) = da(r) M, & da(r) = Zi/)n r)(M),,
(%Wm) — 5nm <¢)a|¢'ﬁ3> — Saﬁ ) (S_l)aﬁ
K = ZMc:zfn(MT)nﬁ

When varying K:
* Occupancies change
e Kohn-Sham orbitals change

* NGWFs do not change
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Example: Gradient of simple LNV functional
Qo] = E[36% — 20°] = E[3LSL — 2LSLSL)]
Purified density kernel: K = 3LSL — 2LSLSL

Differentiate with respect to the elements of L

IE
;L_aﬁ = 6(SLH + HLS) 3, — 4(SLSLH + SLHLS + HLSLS) 3, = G4a

Tensor correction

* To obtain search directions (in steepest descents or conjugate
gradients) a contravariant gradient is needed

G =5G,.S% = 6(LHS_ + S_HL)*’ —4(LSLHS_ + LHL + S_HLSL)*’

E. Artacho and L. M. del Bosch, Phys. Rev. A 43, 5770 (1991).
C. A. White, P. Maslen, M. S. Lee and M. Head-Gordon, Chem. Phys. Lett. 276, 133 (1997).
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NGWF optimisation
(outer loop)

ONETEP spring school, 13-16 April 2010

[ Guess K} and {¢_} ]

Iteratively
improve KB

N
Converged?

Yes

Iteratively
improve {¢,}

No
Converged?

Yes
finished
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Derivatives with respect to NGWFs

(pfl(r) = Z D, (I‘) Cna

Gradient of LNV functional with respect to psinc expansion coefficients of NGWFs

a L . - B a B
I’ = 5 = 20 [(Hos) WK + 6(1)Q™]

r=rm

Tensor-corrected covariant gradient

-
I'=I'm

Ima = ! wfsea = 2w [(ﬁﬁf’_ﬁ)(r)KﬁTS'm + &p (r)Q'ﬁTSFm}

Linear-scaling calculation of gradient with:

* FFT box technique
e Sparse Hamiltonian and overlap matrices

e Sparse density kernel

C.-K. Skylaris, A. A. Mostofi, P. D. Haynes, O. Dieguez and M. C. Payne,
Phys. Rev. B 66, 035119 (2002)

ONETEP spring school, 13-16 April 2010

30



Maintaining localisation: Advantages of orthogonal basis set

Steepest descents or
conjugate gradients

N~

Localisation by truncation
of basis set expansion

= > D;(r)¢

What happens with a
non-orthogonal basis: ¢ localisation sphere r; centre of Di(r)

oE |
Oeri gi

Sij = (Di(r)[Dj(r))
.new — Old B )‘Z

Iterative update contams
gradients from outside of

wcalisation region j
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Occupancy preconditioning

ﬂ)erivative of E w.r.t. orbitals

SE
0y (x)

= 2fn[ﬁ'¢'&n(r) — ntn(T)]

e Derivative of E w.r.t. NGWFs

ch:;(r) -

Relation between Kohn-Sham
orbitals and NGWFs

ba(r) = Zipn(r)(MT)na
llf/)ﬂ(r) = ¢O(r)Man

N

('L.bn ‘Um} = Onm

oF . oF (5(}50(1'!) * ;o oF <¢ \Qf) ) -9 (S—l)aﬂ
- Ir = Mom, al¥p af s
Sgn () J ogn(r) (awn(r)) T S . o
K = M?zfn(M )'r{
()

/ Remove ill-conditioning due to f, ~0
f,in [0,1]

> 2[Hes(r) K — ¢4(r)

make all f,=1 occ mix 1.0

\ 2[Hp(x) (577" = dp(x) (ST TH,, (S71)"]

~

J
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Kinetic energy preconditioning

Length scale ill-conditioning

e Convergence rate falls with
increasing ratio of max/min
eigenvalues of the Hamiltonian

e High energy eigenstates are
dominated by kinetic energy

—0.025

Preconditioner

e Need to reduce the contribution
of kinetic energy in the NGWF
gradient

Kinetic energy x (Ha)

* Pre-multiply NGWF gradient in reciprocal space with a function that behaves as the
inverse of the kinetic energy at high wave vectors and approaches 1 at low wavevectors:

kg

Thee — [ 0ka Example: f, = Ry

k_zero

A. A. Mostofi, P. D. Haynes, C.-K. Skylaris and M. C. Payne, J. Chem. Phys. 119, 83842 (2003)
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Calculation of S

The Inverse of
SaB — <¢a|¢ﬁ>

Is a contravariant tensor, like the density kernel

Can be iteratively generated with the Hotelling formula

Spow = 284 — S0 S S04 maxit hotelling

 Similar to purification transformation
e Converges rapidly
* Can generate S* with linear-scaling cost from the beginning

* Can be used to update S* when NGWFs are updated with minimal
computational effort

» Takes advantage of kernel truncation

ONETEP spring school, 13-16 April 2010
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Overall ONETEP calculation scheme

ONETEP spring school, 13-16 April 2010
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Initialisation of density kernel and NGWFs

or local PAOs (. £b1 file input) sum of atomic densities cutoff energy

[ Guess {(} as Gaussians (AUTO) J [Guess charge density asJ [ Define psinc basis ]

v

[ Build Hamiltonian in {¢} representation ]

A 4

Generate K by canonical purification
(maxit palser mano)

A 4

Improve K by minimisation of energy with penalty functional
(maxit pen, pen param)

l

Proceed to K and {¢} optimisation
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NGWF and density kernel optimisation

Start with initialised K and {¢}

Do LNV optimisation step for K
lnv threshold orig,

minit 1lnv, maxit 1lnv

Yes

Do optimisation step for {¢}
ngwf theshold orig,
maxit ngwf cg,k zero

No

Converged?

Qroperties, geometry optimisation, etc.)
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Key points

* Direct energy minimisation, no density mixing

 All quantities (Hamiltonian, energy, gradients) built with
linear-scaling cost

»NGWEF localisation in real space, FFT-box technique in reciprocal space
»Sparse Hamiltonian and overlap matrixes

»Sparse density kernel (kernel cutoff)

* Linear-scaling iterative algorithms using sparse matrix
algebra

* Matrix products preserve sparsity patterns, e.g. KSK is
less sparse than K

* Tensorially correct gradients
* Preconditioned NGWF optimisation
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