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Electronic energy 
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Outline
1. Kohn-Sham DFT calculations

• Direct energy minimisation versus density mixing

• Using the density matrix to achieve linear-scaling

2. ONETEP scheme: density kernel and NGWFs

• Density matrix idempotency and normalisation conditions

3. Linear-scaling functionals for density matrix optimisation

• Penalty, LNV, PM

4. Optimisation of density kernel

• Density kernel gradients, tensor properties

5. Optimisation of NGWFs

• NGWF gradients, preconditioning schemes

6. Overall ONETEP calculation scheme

• Initialisation of density kernel and NGWFs

• Flowchart, input keywords
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Density Functional Theory (DFT)

•Electronic density

•Hohenberg-Kohn

•Kohn-Sham

Non-interacting electrons Density of interacting electrons
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Self-consistency

• Variational principle

• Constraint

• Eigenvalue equation for 
molecular orbitals (bands)

• But the Hamiltonian operator 
depends on the molecular orbitals
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Direct energy minimisation

Calculate energy

Vary orbitals

So that

Are

within tolerance?

Increase 
p by 1

• Direct search for well-defined minimum

Yes

No

finished

Solve (diagonalise Hamiltonian)

Build density

Mix with previous densities

Are

within tolerance?

Diagonalisation and density mixing

Increase 
p by 1

• Discontinuous changes
• Hamiltonian search (indirect)

Yes

No

finished

Achieving self-consistency



Function minimisation

• Iterative procedures

• Need the value of the function and its gradient at each step

• Converge to local minima

• Moves always downhill

• Robust but may need very 
large number of iterations

• Converges in N steps for N-
dimensional quadratic function

• In practice very efficient even 
for non-quadratic functions
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Cubic-scaling computational cost of DFT
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Calculation run on 96 cores



Kohn-Sham DFT calculation bottlenecks

Minimise E w.r.t.:
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Computational 
bottlenecks

Build energy and 
Hamiltonian

H, E[n]

Orthogonality

O(N3)> O(N2)

Solve

Diagonalise
Hamiltonian 
matrix

O(N3)



Take advantage of this locality condition to make 
the density matrix contain a linear amount of data

Truncate exponential “tail”, impose:

Density matrix localisation

Nearsightedness of electronic matter
W. Kohn, Phys. Rev. Lett. 76, 3168 (1996); E. Prodan and W. Kohn, P.N.A.S. 102 11635 (2005)
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In systems with a band gap:



• Conditions

• Idempotency (from orbital orthonormality and occupancies 1 or 0)

• Normalisation (preserving the number of electrons) 
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One-particle density matrix in DFT

• Operator representation

• Position representation

=Ne
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Energy expressions

• With orbitals

• With density matrix
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Self-consistency

• Idempotency

• Normalisation 

When the H and r commute

therefore

(spin-unpolarised case)

Conditions



Calculation bottlenecks with the density matrix

Minimise E w.r.t.:
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Computational 
bottlenecks

Orbitals Density matrix

Build

E[n]

Orthogonality / 
solve Hamiltonian

O(N3)

Idempotency

O(N3)> O(N2)



Truncate exponential “tail”, impose:

Linear-scaling DFT using the density matrix
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sparse matrix

• K matrix made sparse by truncation

• S and H  in terms of             also sparse

• Optimise energy with respect to K using algorithms 
that include only sparse matrix multiplications

• Sparse matrix multiplications can be linear-scaling 
if the sparsity is suitably exploited 

is expanded in non-orthogonal localised functions:

The density matrix



Non-orthogonal 
Generalised Wannier
Functions (NGWFs)

Molecular orbitals
(MOs)

ONETEP aims for linear-scaling with high accuracy

The             are not fixed, but are optimised in situ, (in addition to K) 
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NGWF
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Density matrix in terms of NGWFs

MO

Density kernel



• Inner loop: 
Optimise total 
(interacting) 
energy E w.r.t K
for fixed  {fa}
while imposing 
idempotency
and 
normalisation

• Outer loop: 
Optimise total 
(interacting) 
energy E w.r.t. to 
K and {fa}     

Density matrix optimisation in ONETEP
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Iteratively 
improve Kab

Converged?

Iteratively 
improve {fa}

Converged?

Guess Kab and {fa}

finished

Yes

No

No

Yes
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“Linear-scaling” functionals

• These are not DFT exchange and correlation functionals

• These are functionals of the density matrix which have been
designed so that when they are minimised:

• Produce the total energy

• Implicitly impose the required conditions (idempotency and
normalisation) on the density matrix that minimises them

• The aim of using these functionals is to work with expressions
which involve only (sparse) matrix multiplications

• We will examine the functionals implemented in ONETEP

• Penalty functional

• Li –Nunes-Vanderbilt (LNV) types of functionals

• Palser-Manolopoulos approach (not a functional)



Penalty functional

• Minimum (P=0) for idempotent density matrices

• Will always converge, regardless how non-idempotent the initial guess

• Constraints to preserve the total number of electrons are needed
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Penalty functional derivatives

• If  we apply a quadratic approximation (near the minimum):

• Assume a steepest descents “step” to update fk

Purification transformation
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R. McWeeny, Rev. Mod. Phys. 32(2), 335(1960)



Purification transformation

• Improves the idempotency of a nearly idempotent density matrix

• Forces occupancies in interval [0,1] (“weak” idempotency)

• Quadratic convergence. Example:  
 f(1) = 1.1
 f(2) = 31.13 –21.12 = 0.968
 f(3) = 30.9683 – 20.9682 = 0.997
 Etc..

• But, diverges if the initial occupancies are not within certain bounds
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Energy with penalty functional

P. D.  Haynes and M. C. Payne, Phys. Rev. B 59, 12173 (1999)

• Balance between minimum energy and minimum penalty
• Near-idempotency, depending on value of a
• Correction expression available for the energy
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Li-Nunes-Vanderbilt (LNV) functionals

X.-P. Li., R. W. Nunes and D. Vanderbilt, Phys. Rev. B 47, 10891 (1993),
M. S. Daw, Phys. Rev. B 47,10895 (1993)

J. M. Millam and G. E. Scuseria, J. Chem. Phys. 106, 5569 (1997)

• Energy expressions containing a purification transformation of an
“auxiliary” density matrix

• Implicitly enforce idempotency

• Break down if purification transformation breaks

• Minimisation of band structure energy (equivalent to diagonalisation)

• But H also depends on r: Self-consistency by density mixing
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LNV functionals in ONETEP

• No density mixing, just direct minimisation of interacting energy

• Purification never allowed to break down

• Occupancy maxima and minima tracked 

• Restored by penalty functional if out of safe range

• Electron number conserved without need to know the chemical potential

exact_lnv = F

exact_lnv = T (default)
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P. D. Haynes, C.-K. Skylaris, A. A. Mostofi, and M. C. Payne, J. Phys.: Condens. Matter  20, 294207 (2008)



Canonical purification

• One can approximate r as a polynomial expansion of H

• Can do this iteratively with a formula that resembles the purification 
transformation:

• Always converges

• No need to know m

A. H. Palser and D. E. Manolopoulos, Phys. Rev. B 58, 12704 (1998)
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Density kernel optimisation 
(inner loop)

Iteratively 
improve Kab

Converged?

Iteratively 
improve {fa}

Converged?

Guess Kab and {fa}

finished

Yes

No

No

Yes



Derivatives with respect to the density kernel

When varying K: 

• Occupancies change

• Kohn-Sham orbitals change

• NGWFs do not change

Relationship between canonical Kohn-Sham orbitals and NGWFs
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Example: Gradient of simple LNV functional

Differentiate with respect to the elements of L

Tensor correction
• To obtain search directions (in steepest descents or conjugate 

gradients) a contravariant gradient is needed

E. Artacho and L. M. del Bosch, Phys. Rev. A 43, 5770 (1991).

C. A. White, P. Maslen, M. S. Lee and M. Head-Gordon, Chem. Phys. Lett. 276, 133 (1997).
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Purified density kernel:
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NGWF optimisation 
(outer loop)

Iteratively 
improve Kab

Converged?

Iteratively 
improve {fa}

Converged?

Guess Kab and {fa}

finished

Yes

No

No

Yes



Derivatives with respect to NGWFs

Gradient of LNV functional with respect to psinc expansion coefficients of NGWFs  

Tensor-corrected covariant gradient

Linear-scaling  calculation of gradient with:
• FFT box technique
• Sparse Hamiltonian and overlap matrices
• Sparse density kernel 
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C.-K. Skylaris, A. A. Mostofi, P. D. Haynes, O. Dieguez and M. C. Payne, 
Phys. Rev. B 66, 035119 (2002)



Maintaining localisation: Advantages of orthogonal basis set

Steepest descents or 
conjugate gradients

ri centre of Di(r)f localisation sphere
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Localisation by truncation 
of basis set expansion

What happens with  a 
non-orthogonal basis:

Iterative update contains 
gradients from outside of 
localisation region
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Occupancy preconditioning

Relation between Kohn-Sham 
orbitals and NGWFs

• Derivative of E w.r.t. NGWFs

Remove ill-conditioning due to fn ~0 

Use for search directionsocc_mix = 1.0
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• Derivative of E w.r.t. orbitals

fn in [0,1]

make all fn =1
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• Pre-multiply NGWF gradient in reciprocal space with a function that behaves as the
inverse of the kinetic energy at high wave vectors and approaches 1 at low wavevectors:

Kinetic energy preconditioning

Length scale ill-conditioning

• Convergence  rate falls with 
increasing ratio of max/min 
eigenvalues of the Hamiltonian

• High energy eigenstates are 
dominated by kinetic energy

• Need to reduce the contribution 
of kinetic energy in the NGWF 
gradient 

Example: k_zero

A. A. Mostofi, P. D.  Haynes, C.-K. Skylaris and M. C. Payne, J. Chem. Phys. 119, 8842 (2003)
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H-bond (7 atoms)
Crystalline silicon  (1000 

atoms)

(20, 0) Nanotube
(1280 atoms)

Protein  
(988 atoms)

ZSM5 zeolite (576 
atoms)

Fast convergence
True linear-scaling

C.-K. Skylaris, P. D. Haynes, A. A. Mostofi and M. C. Payne, Phys. Stat. Sol. (b) 243(5), 973 (2006)



Calculation of S-1

Is a contravariant tensor, like the density kernel

maxit_hotelling

The Inverse of

Can be iteratively generated with the Hotelling formula

• Similar to purification transformation

• Converges rapidly

• Can generate S-1 with linear-scaling cost from the beginning

• Can be used to update S-1 when NGWFs are updated with minimal 
computational effort

• Takes advantage of kernel truncation
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Overall ONETEP calculation scheme



Initialisation of density kernel and NGWFs

Guess {f} as Gaussians (AUTO) 
or local PAOs (.fbl file input)

Guess charge density as 
sum of atomic densities

Build Hamiltonian in {f} representation

Generate K by canonical purification 
(maxit_palser_mano)

Improve  K by minimisation of energy with penalty functional 
(maxit_pen, pen_param)

Proceed to K and {f} optimisation
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Define psinc basis
cutoff_energy



NGWF and density kernel optimisation

Do LNV optimisation step for K
lnv_threshold_orig, 

minit_lnv, maxit_lnv

Do optimisation step for {f}
ngwf_theshold_orig, 

maxit_ngwf_cg,k_zero

Converged?

Converged?

Start with initialised K and {f}

Properties, geometry optimisation, etc.
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Yes

No

Yes

No



Key points

• Direct energy minimisation, no density mixing

• All quantities (Hamiltonian, energy, gradients) built with 
linear-scaling cost
NGWF localisation in real space, FFT-box technique in reciprocal space

Sparse Hamiltonian and overlap matrixes

Sparse density kernel (kernel_cutoff)

• Linear-scaling iterative algorithms using sparse matrix 
algebra

• Matrix products preserve sparsity patterns, e.g. KSK is 
less sparse than K

• Tensorially correct gradients

• Preconditioned NGWF optimisation
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