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e the DFT+U formalism

e the DMFT formalism
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e not the case for transtion metals: electrons hesitate between itinerant
and localised behaviour

e d/f orbitals tend to overbind since these orbitals are delocalised and
wrongly participate in bonding (elemental Plutonium in its delta
phase: cell volumes off by 30%)

e we need to appeal to a less approximate theory to treat these electrons
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where n? is the density-matrix of some correlated subspace

Inclusion of Hubbard-model-like term to DFT

identify correlated subspaces that require special treatment (P = >l (eil)
trust DFT to adequately describe the rest of the system

Penalises non-integer occupancies

U is a—user-speeified—parameter — explicitly calculated

Comes at very little additional computational cost



Green'’s functions

DMFT (Metzner et al. (1989), Georges et al. (1992) and Anisimov et al. (1997));
incorporation of Green function formalism into DFT

If A= Fo+ F(t)Y then

(X(1) = / dt' Gy (£)F(0)

We are interested in excitations/holes:

X, V—=eles Gyt — Gis(t) = —i0(t)({ca(t), c(0)})
For non-interacting systems
1
0 _
G'(w) = pE—

Extend to interacting systems by introducing the self energy X:

1
6(w) = w+pu—H-—X(w)

= G=G"+G':G
System properties are then accessed via the Green's function

et 1) = 5~ (67(w) - 6"(w))
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Implementation of DMFT in ONETEP

ONETEP TOSCAM

Standard DFT
calculation

Upfold to Yk e Generate Xay
| A
Update Hxs and Calculate Gam (ED

1 as appropriate or other solver)

A
‘ Map to the AIM:
Generate Giot solve Aam = A,
‘ for {€as, Vam}
Project onto subspaces: f
G = P! GoP;; —_— Calculate A;

5 = Pl sksPi



Example results

DOS Optical spectra

— Singleshot

—— Charge-SC

S
—4 -2 0 2 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
energy (eV) Energy (CV)
Reduced density matrix 06
0.5
c 04
A —BE; T S
p=> e EiTrpa [|i){i] S 03
i = 0.2
N
0.0
0 1/2 1

yields spin distributions, entropies
(we are in a mixed quantum state) spin (1/2)

3/2 2



e Functionality is about to be committed to devel version

e TOSCAM to become available under LGPL (freely accessible via a git
repository)

e Get in touch if interested! (ebl27@cam.ac.uk or
cedric.weber@kcl.ac.uk)
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The DMFT loop
We start with the Hamiltonian of a
DFT calculation:

H tot

and as a starting guess for the
Green's function
1

Gtot = Groy = wtp—H
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Projecting

Projection onto Hubbard subspaces:

@ Gt = (9| 60) G2 (S5 0m)

(Likewise for H, %)

How to consider these projected quantities while not disregarding inter-
action with the rest of the system? The trick: map to an Anderson
Impurity Model (AIM)



The DMFT loop
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The DMFT loop
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The DMFT loop

Projecting

\ =
@ cdooo0o00
bath sites

t
‘N R

impurity sites

\'

Gimp(w) ! =w + 1 — t — imp(w)

Mapping 1

—V——yf
@4/ wtu—e
N—————

Aimp(w)

For the original system define analogously a hybridisation function
A(w) =w+p— A— G 1(w) — £(w) and then minimise the difference

d(V,€) = / de (Aimp(0) — A(w))



The DMFT loop

Projecting

We now have Hajn which we solve
can explicitly via exact diagonalisa-

tion (Lanczos), CTQMC, ...
This is the most expensive step of
\ the calculation (empty, 1, |, and 1|

on each site)
Solving Mapping

@



The DMFT loop

Upfolding Projecting

Upfolding the self-energy

(Ztot)aﬁ = (¢a |me>(zmm/ _Egcml)@om’ |¢ﬁ>

and update the Green's function

1
W+ p— Hiot — Xior

Gtot =

Solving Mapping

X 2



Self-consistency schemes

Fxs, 11, ks = 0 Fks, 1", Tks
Tks s
(a) single-shot (b) charge self-consistent

HF?S! ‘un’ ZI'<1S I

| A
‘ n+1 J

TE
(c) fully self-consistent

I

—

Three SC schemes, in increasing order of accuracy (and computational cost)



The interaction Hamiltonian

In the auxiliary AIM system, Hy is chosen to be of the Slater-Kanamori
form:

Hy = UanTnm¢+ (U, — ;) Z NNy

m>m’

—J > (2SmSmr + £ vt o))

m>m’

where U’ = U — 2J; S, is the spin of orbital m, given by
1
L E 1 .
(sm)l - 2 / fma’(sl)o'o'/ fma’v

with {s;} being the Pauli spin matrices. U and J are user-specified
parameters that in principle could be obtained via linear response.



Double-counting correction

The double-counting term (used when upfolding) is given by

av

U J
5 n(n—l)—EZno(nU—l)

(o

Edc =

where n is the total occupancy of the subspace, and

U — U+2(N—-1)U
o 2N — 1

with N being the number of orbitals and U’ = U — 2J. This
double-counting is derived by attempting to subtract the DFT
contributions in an average way; U?" is the average of the intra- and
inter-orbital Coulomb parameters.

EF™C = EgcO™

where O™ = (p™|¢%) Sop(d?|™ ) is the overlap matrix of the subspace
NGWFs



Mixed quantum spin states

The reduced density matrix is defined as
p= e ETrogm [1i)il]
i

The eigenvectors of j provide a description of the many-body states of the
impurity subspace

The eigenvalues A, are normalised weights (>, Ax = 1), and the von
Neumann entropy is

A= —kg Z Meln(Ag)
k



