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Failures of DFT

• many electrons have delocalised/free-electron character and are
consequently well-described by DFT

• not the case for transtion metals: electrons hesitate between itinerant
and localised behaviour

• d/f orbitals tend to overbind since these orbitals are delocalised and
wrongly participate in bonding (elemental Plutonium in its delta
phase: cell volumes off by 30%)

• we need to appeal to a less approximate theory to treat these electrons
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Delocalisation error; DFT+U
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DFT+U (Anisimov et al., 1991 & 1993)

EDF T+U = EDF T +
U

2

∑
σ

Tr[nσ(1− nσ)]

where nσ is the density-matrix of some correlated subspace

• Inclusion of Hubbard-model-like term to DFT

• identify correlated subspaces that require special treatment (P̂ =
∑

i |ϕi 〉〈ϕi |)
• trust DFT to adequately describe the rest of the system

• Penalises non-integer occupancies

• U is a user-specified parameter

→ explicitly calculated

• Comes at very little additional computational cost
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Green’s functions

DMFT (Metzner et al. (1989), Georges et al. (1992) and Anisimov et al. (1997));
incorporation of Green function formalism into DFT

If Ĥ = Ĥ0 + F (t)Ŷ then

〈X̂ (t)〉 =

∫
dt′G+

X Y (t)F (0)

We are interested in excitations/holes:

X̂ , Ŷ → ĉ†
α, ĉβ G+

X Y (t) → G+
αβ(t) = −iΘ(t)〈{cα(t), c†

β(0)}〉

For non-interacting systems

G 0(ω) =
1

ω + µ− H

Extend to interacting systems by introducing the self energy Σ :

G(ω) =
1

ω + µ− H − Σ(ω)
=⇒ G = G0 + G0ΣG

System properties are then accessed via the Green’s function

e.g. ραβ(ω) =
1

2iπ

(
Gαβ(ω)− G †αβ(ω)

)



The principle of DMFT

We want to solve for the Green’s function and the self-energy

• we can’t (nor do we want to) explicitly solve for the Green’s function
of the entire system

• identify correlated subspaces that require special treatment
(P̂ =

∑
i |ϕi 〉〈ϕi |)

• trust DFT to adequately describe the rest of the system
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The DMFT loop

Htot,
Σtot = 0

Projecting

Σ̃ , G̃ , H̃

Mapping

HAIM

Solving

Σimp
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The DMFT loop

Htot,
Σtot = 0

Projecting

Σ̃ , G̃ , H̃

Mapping

HAIM

Solving

Σimp

Upfolding
impurity sites

bath sites

ε
V

t

ĤAI M =
∑
i jσ

(εi j − µ)c†
iσcjσ

+
∑
iασ

(
Vαi f

†
ασciσ + h.c.

)
+
∑
αβσ

(tαβ − µ)f †
ασfβσ + ĤU



Implementation of DMFT in ONETEP

ONETEP TOSCAM

Standard DFT
calculation

Upfold to ΣKS

Update HKS and
µ as appropriate

Generate Gtot

Generate ΣAI M

Calculate GAIM (ED
or other solver)

Map to the AIM:
solve ∆AIM = ∆̃i

for {εαβ , Vαm}

Calculate ∆̃i

Project onto subspaces:
G̃i = P†

i GtotPi ;
Σ̃i = P†

i ΣKS Pi



Example results
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Outlook

• Functionality is about to be committed to devel version

• TOSCAM to become available under LGPL (freely accessible via a git
repository)

• Get in touch if interested! (ebl27@cam.ac.uk or
cedric.weber@kcl.ac.uk)
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The DMFT loop

Htot,
Σtot = 0

Projecting

Σ̃ , G̃ , H̃

Mapping

HAIM

Solving

Σimp

Upfolding

Htot,
Σtot = 0

Σ̃ , G̃ , H̃

HAIM

Σimp

Σtot,
Gtot, Htot

We start with the Hamiltonian of a
DFT calculation:

Htot

and as a starting guess for the
Green’s function

Gtot = G 0
tot =

1

ω + µ− H
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tot 〈φβ|ϕm〉

(Likewise for H̃, Σ̃ )
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(Likewise for H̃, Σ̃ )

How to consider these projected quantities while not disregarding inter-
action with the rest of the system? The trick: map to an Anderson
Impurity Model (AIM)
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The DMFT loop
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For the original system define analogously a hybridisation function
∆̃(ω) = ω + µ− H̃ − G̃−1(ω)− Σ̃ (ω) and then minimise the difference

d(V, ε) =

∫
dω
(

∆imp(ω)− ∆̃(ω)
)



The DMFT loop
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We now have HAI M which we solve
can explicitly via exact diagonalisa-
tion (Lanczos), CTQMC, ...
This is the most expensive step of
the calculation (empty, ↑, ↓, and ↑↓
on each site)



The DMFT loop
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Σimp
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Upfolding the self-energy

(Σtot)αβ = 〈φα|ϕm〉(Σ mm′−E mm′

DC )〈ϕm′ |φβ〉

and update the Green’s function

Gtot =
1

ω + µ− Htot − Σtot



Self-consistency schemes

ĤKS , µ, Σ 0
KS = 0

DMFT Solver

ΣKS

(a) single-shot

ĤKS , µn, Σ n
KS

DMFT Solver

Σ n+1
KS

µn+1

(b) charge self-consistent

Ĥn
KS , µn, Σ n

KS

DMFT Solver

Σ n+1
KS

µn+1

Ĥn+1
KS

(c) fully self-consistent

Three SC schemes, in increasing order of accuracy (and computational cost)



The interaction Hamiltonian

In the auxiliary AIM system, HU is chosen to be of the Slater-Kanamori
form:

HU = U
∑

m

nm↑nm↓ +

(
U ′ − J

2

) ∑
m>m′

nmnm′

−J
∑

m>m′

(2SmSm′ + f †m↑f
†

m↓fm′↑fm′↓)

where U ′ = U − 2J; Sm is the spin of orbital m, given by

(Sm)i =
1

2

∑
σσ′

f †mσ(si )σσ′fmσ′ ,

with {si} being the Pauli spin matrices. U and J are user-specified
parameters that in principle could be obtained via linear response.



Double-counting correction

The double-counting term (used when upfolding) is given by

Edc =
Uav

2
n (n − 1)− J

2

∑
σ

nσ(nσ − 1)

where n is the total occupancy of the subspace, and

Uav =
U + 2(N − 1)U ′

2N − 1

with N being the number of orbitals and U ′ = U − 2J. This
double-counting is derived by attempting to subtract the DFT
contributions in an average way; Uav is the average of the intra- and
inter-orbital Coulomb parameters.

E mm′
D C = Ed cOmm′

where Omm′
= 〈ϕm|φα〉Sαβ〈φβ|ϕm′〉 is the overlap matrix of the subspace

NGWFs



Mixed quantum spin states

The reduced density matrix is defined as

ρ̂ =
∑

i

e−βEi Trbath [|i〉〈i |]

The eigenvectors of ρ̂ provide a description of the many-body states of the
impurity subspace
The eigenvalues λk are normalised weights (

∑
k λk = 1), and the von

Neumann entropy is

Λ = −kB

∑
k

λk ln(λk )


