Meta-GGAs in ONETEP (Briefly)

ONETEP Masterclass 2017, Aug/Sep 2017

James C. Womack

University of Southampton, Southampton, UK

Linear-scaling density functional theory

- Orthogonalize KS orbitals extending over entire system
- Cubically scaling computational cost

 $\mathcal{O}(N^3)$

Conventional Kohn-Sham DFT $E_{KS}[n] = T_{s}[n] + E_{ext}[n] + E_{Hartree}[n] + E_{xc}[n]$ $\left(-\frac{1}{2}\nabla^{2} + V_{KS}(\mathbf{r})\right)\psi_{i}(\mathbf{r}) = \varepsilon_{i}\psi_{i}(\mathbf{r})$

Linear-scaling density matrix DFT

$$\rho(\mathbf{r}, \mathbf{r}') = \sum_{i}^{N} f_{i} \psi_{i}(\mathbf{r}) \psi_{i}^{*}(\mathbf{r}')$$
$$\rho(\mathbf{r}, \mathbf{r}) = n(\mathbf{r})$$
$$T_{s}[n] = \int d\mathbf{r} \left[-\frac{1}{2} \nabla_{\mathbf{r}}^{2} \rho(\mathbf{r}, \mathbf{r}') \right]_{\mathbf{r}=\mathbf{r}'}$$

 $\mathcal{O}(N)$

- The density matrix is "nearsighted"
- For insulators:*

$$\rho(\mathbf{r}, \mathbf{r'}) \sim e^{-\gamma |\mathbf{r} - \mathbf{r'}|}$$

 Exploit this to obtain linear scaling computational cost

*see e.g. S. Ismail-Beigi and T.A. Arias, Phys. Rev. Lett. **82**, 2127 (1999)

Approximate exchange-correlation functionals

- No practical exact form is known
 - Approximations are required
- Ideally, these should be
 - Accurate
 - Computationally efficient
- "Jacob's ladder" of approximations
 - Hierarchical series
 - New ingredients on each "rung"
 - Higher rungs are more flexible
- Which is the best tool for the job?

$$E_{\rm xc}[n] = \int d\mathbf{r} \, \epsilon_{\rm xc}(n(\mathbf{r}), \nabla n(\mathbf{r}), \tau(\mathbf{r}))$$

J.P. Perdew and K. Schmidt, AIP Conf. Proc. 577, 1 (2001)

Motivation: The meta-GGA "Goldilocks zone"

* Linear scaling exact exchange has been achieved in ONETEP but with a relatively large prefactor: J. Dziedzic, Q. Hill, and C.-K. Skylaris,

J. Chem. Phys. **139**, 214103 (2013)

** For more on constraint satisfaction:
J.P. Perdew, A. Ruzsinszky, J. Tao,
V.N. Staroverov, G.E. Scuseria, and G.I. Csonka,
Cham. Phys. **122**, 62201 (2005).

J. Chem. Phys. 123, 62201 (2005)

Self-consistent meta-GGA evaluation

$$V_{\rm xc}(\mathbf{r}) = \frac{\delta E_{\rm xc}}{\delta n(\mathbf{r})} = \frac{\delta}{\delta n(\mathbf{r})} \int d\mathbf{r} \,\epsilon_{\rm xc}(n, \nabla n, \tau[n]) \quad \dots \quad \mathbf{i} \quad \frac{\delta \tau[n]}{\delta n(\mathbf{r})} = ?$$

Functional Derivatives (of τ -dependent functionals) with respect to the Orbitals*

Use the functional derivative chain rule to obtain $\frac{\delta E_{\rm xc}^{\rm mGGA}}{\delta \psi_i(\mathbf{r})} = \int d\mathbf{r}' \, \frac{\delta E_{\rm xc}^{\rm mGGA}}{\delta n(\mathbf{r}')} \frac{\delta n(\mathbf{r}')}{\delta \psi_i(\mathbf{r})}$

The functional derivative

$$\frac{\delta n(\mathbf{r}')}{\delta \psi_i(\mathbf{r})} = 2\psi_i(\mathbf{r})\delta(\mathbf{r}' - \mathbf{r})$$

allows us to derive the following relationship

$$\frac{1}{2} \frac{\delta E_{\rm xc}^{\rm mGGA}}{\delta \psi_i(\mathbf{r})} = \frac{\delta E_{\rm xc}^{\rm mGGA}}{\delta n(\mathbf{r})} \psi_i(\mathbf{r})$$

* AKA "NNH" approach after the creators: R. Neumann, R.H. Nobes, and N.C. Handy, Mol. Phys. **87**, 1 (1996)

$$n(\mathbf{r}) = \sum_{i=1}^{N} |\psi_i(\mathbf{r})|^2$$
$$\tau(\mathbf{r}) = \frac{1}{2} \sum_{i=1}^{N_{\text{occ}}} |\nabla \psi_i(\mathbf{r})|^2$$

Advantages of the approach

- Theoretical simplicity
- Computational simplicity
- Wide use in other code

For a detailed account, see:

- F. Zahariev, S.S. Leang, and M.S. Gordon,
- J. Chem. Phys. 138, 244108 (2013)

Functionals

PKZB

- An early meta-GGA (1999)
 - 1 empirical parameter
 - Evolved into TPSS (2003)
- Simple to implement
 - Based on PBE, but with τ
- Widely available
 - Stable implementations to compare and test against
- Inconsistent accuracy
 - Superseded by modern meta-GGAs

B97M-V

- Modern meta-GGA (2015)
 - Combinatorially designed form
 - Empirically fitted to very large data set
- Incorporates non-local VV10 functional
 - Available in ONETEP
- Excellent accuracy
 - Comparable to popular hybrid functionals
 - Broadly applicable
- Code provided by N. Mardirossian

J.P. Perdew, S. Kurth, A. Zupan, and P. Blaha, Phys. Rev. Lett. **82**, 2544 (1999) N. Mardirossian and M. Head-Gordon, J. Chem. Phys. **142**, 074111 (2015)

Aside: How good is B97M-V?

Thermochemical data			2460 data points	Non-covalent data		
	RMSD	Hybrid			RMSD	Hybrid
M06-2X	3.21	√	Performs well against hybrid functionals!	B97M-V	0.22	
ωB97X-V	3.60	1		ωB97X-V	0.32	✓
ωB97X-D	3.61	1		M06-L	0.42	
B97M-V	3.93		NLC is not sufficient for good performance in either set	B97-D2	0.48	✓
B97-D2	3.97	1		ωB97X-D	0.54	✓
M11	3.97	1		M11	0.55	✓
M06	4.18	1		M06	0.57	✓
B3LYP-D3	4.66	1		M06-2X	0.77	1
M06-L	5.63			B3LYP-D3	0.77	✓
TPSS-D3	6.45			TPSS-D3	0.85	
VV10	9.81			PBE-D3	1.23	
PBE-D3	10.10			VV10	1.36	
Zero	3836.93			Zero	14.95	

aQZ basis set

aTZ basis set

RMSDs in kcal/mol for thermochemical and non-covalent datasets (combined training and test data). Based on Table V of N. Mardirossian and M. Head-Gordon, J. Chem. Phys. **142**, 074111 (2015).

Results: Binding energies

Binding energies in kcal/mol. RMSDs relative to Q-Chem

*"rV" refers to revised VV10: R. Sabatini, T. Gorni, and S. de Gironcoli, Phys. Rev. B 87, 041108 (2013).
I, II structures (HW30): K.L. Copeland and G.S. Tschumper, J. Chem. Theory Comput. 8, 1646 (2012).
III, IV structures (X40): J. Řezáč, K.E. Riley, and P. Hobza, J. Chem. Theory Comput. 8, 4285 (2012).

Results: Conformational energies

Cysteine structures: L. Goerigk and S. Grimme, J. Chem. Theory Comput. **7**, 291 (2011) Melatonin structures: U.R. Fogueri, S. Kozuch, A. Karton & J.M.L. Martin, J. Phys. Chem. A **117**, 2269 (2013)

Results: Computational efficiency

Structure provided by authors of J.T. Berryman, S.E. Radford, and S.A. Harris, Biophys. J. 97, 1 (2009)

Conclusions

- Self-consistent meta-GGA functional evaluation in ONETEP
 - Theoretical and computational framework implemented and tested
 - Further functional forms can easily be added
 - Meta-GGAs can be applied to very large systems
- Numerical agreement with other implementations
 - Comparable agreement to well-tested GGA functionals
- Linear-scaling computational cost
 - Self-consistent evaluation of meta-GGA functionals
 - Demonstrated for systems with 1000s of atoms

Practical considerations

- Meta-GGA functionality is still under development
 - Only PKZB and B97M-V implemented
 - Not compatible with some other parts of ONETEP (e.g. PAW)
- To use a meta-GGA, use
 - xc_functional: PKZB
 - xc_functional: B97M-V
- Other keywords
 - xc_initial_functional
 - xc_mintau ┥

XC functional to use for computing initial guess (cannot be meta-GGA)

Parameter controlling truncation of $1/\tau$

• Input examples can be found in test directory (56 and 57)

Please ask me, if you are interested!

Acknowledgements and references

- Collaborators
 - Chris-Kriton Skylaris (Southampton)
 - Martin Head-Gordon (Berkeley)
 - Narbe Mardirossian (Berkeley)
- Compute resources
 - University of Southampton IRIDIS HPC facility

- Software
 - ONETEP (www.onetep.org)
 - Q-Chem (www.q-chem.com)
- References
 - J.C. Womack, N. Mardirossian,
 M. Head-Gordon, and C.-K. Skylaris,
 J. Chem. Phys. **145**, 204114 (2016)
 - N. Mardirossian, L. Ruiz Pestana, J.C. Womack, C.-K. Skylaris,
 T. Head-Gordon, and
 M. Head-Gordon, J. Phys. Chem. Lett. 8, 35 (2017)

Engineering and Physical Sciences Research Council

Original artwork by Lauren Womack