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Why PAW?

Projector Augmented Waves:

• Best aspects of PWPSP & best aspects of AE calculations

• Well-established formalism, implemented in ABINIT, VASP, PWSCF, etc

• Access to all-electron orbitals, density & potential near nucleus

• Allows softer pseudopotentials than Norm Conserving psps
(many similarities to Vanderbilt usps)

P. E. Blöchl, Phys. Rev. B 50, 17953 (1994) (> 8000 citations)
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PAW transformation in Traditional DFT

Relates AE orbitals |ψn〉 to PS orbitals |ψ̃n〉:

|ψn〉 = |ψ̃n〉 + ∑
i
(|ϕi〉 − |ϕ̃i〉)〈p̃i|ψ̃n〉 = τ|ψ̃n〉

AE expectation values in terms of PS orbitals:

〈A〉= ∑
n

fn〈ψn|Â|ψn〉= ∑
n

fn〈ψ̃n|τÂτ|ψ̃n〉
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Wavefunctions in PAW

Within a sphere around each atom:

• |ϕi〉 : AE partial waves (radial grid)

• |ϕ̃i〉 : PS partial waves (radial OR cartesian grid)

• |p̃i〉 : PAW projectors (cartesian grid)
dual to PS partial waves for complete pw basis: 〈p̃i|ϕ̃j〉= δij

Kohn-Sham Eq:

Ĥ|ψn〉= εn|ψn〉

τ
†Ĥτ|ψn〉= εnτ

†
τ|ψn〉

Modi�ed orthogonality condition for PS wfns:

〈ψm|ψn〉= δmn ⇒ 〈ψ̃m|Ŝ|ψ̃n〉= δmn with Ŝ= 1+|p̃i〉(〈ϕi|ϕj〉−〈ϕ̃i|ϕ̃j〉)〈p̃j|



The Projector Augmented Wave Method PAW in ONETEP Applications

Total Energies in PAW

AE total energy is:

ET = ∑
n

fn〈ψn|
−1

2
∇

2|ψn〉+EH [nv +nZc]+Exc[nv +nc]+EII

Decomposes as:
E = Ẽ+E1− Ẽ1 , (1)

where:

• Ã refers to a quantity evaluated for the PS orbitals

• A1 refers to a quantity evaluated for the AE partial waves

• Ã1 refers to a quantity evaluated for the PS partial waves

• Â refers to a quantity involving the compensation density
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Densities in PAW

For the density, we write

n(r) = ∑
n

fn|ψn(r)|2 = ñ(r) + n1(r) − ñ1(r)

= ∑
n

fn|ψ̃n(r)|2 +∑
ij

ρ
ij
ϕi(r)ϕj(r)−∑

ij
ρ

ij
ϕ̃i(r)ϕ̃j(r)

ρ ij is a density matrix for the sphere part:

ρ
ij = ∑

n
fn〈ψ̃n|p̃i〉〈p̃j|ψ̃n〉

ñ(r) can be treated on regular grid, but n1(r) and ñ1(r) must be treated on
radial grid around each atom for high accuracy.
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ONETEP

Represent DM with non-orthogonal local
orbitals φα (r) and density kernel Kαβ

ρ(r,r′) = φα (r)Kαβ
φβ (r′)

Energy: ET= Tr(KH)−Edc

• Local orbitals, Hαβ= 〈φα |Ĥ|φβ 〉 and
Sαβ = 〈φα |φβ 〉 and sparse matrices

• Density matrix nearsighted for

insulators, so Kαβ is sparse.

• Enforce normalisation and idempotency
of DM while minimising energy ET to
optimise kernel Kαβ

• Optimise form of φα (r) via systematic
underlying basis

No use of eigenstates!
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ONETEP

NGWF: in-situ optimisation

Psinc basis equivalent to
plane-waves:

Minimal local orbital basis,
systematic wrt real &
recip-space cuto�s

FFT Box Approximation
Local φα ⇒moving FFT box
Kinetic/NL in recip-space

Strictly O(N) Hαβ and n(r)
evaluation

Sparse Matrix Algebra
E�cient parallelisation and load
balance

Adaptive Kernel Optimisation
Puri�cation / Penalty / LNV

.
O(N) matrix algebra and kernel
optimisation
.

Advantages of ONETEP

Accurate: equivalent to plane waves
Scales as O(N) with system size
High parallel e�ciency on thousands of cores
Vacuum is `free'

... Problems

Only supports NCPPs: hard to treat transition
metals, oxides etc
No use of eigenstates: how to apply PAW
transformation?

www.onetep.org; CK Skylaris, PD Haynes, AA Mosto� and MC Payne, J. Chem. Phys. 122, 084119 (2005)
NDM Hine, PD Haynes, AA Mosto�, C-K Skylaris, MC Payne, Comput. Phys. Commun. 180, 1041 (2009)
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PAW with Density Matrices

Need equivalent PAW transformation on DM:

ρ = ρ̃ + ∑
ij

(
|ϕi〉〈p̃i|ρ̃|p̃j〉〈ϕj| − |ϕ̃i〉〈p̃i|ρ̃|p̃j〉〈ϕ̃j|

)

NGWFs constructed out of psinc functions, equivalent to
plane-waves: φα (r) = ∑i cαi D(r− ri)

D(r) =
1

N1N2N3

J1

∑
K=−J1

J2

∑
L=−J2

J3

∑
M=−J3

ei(KB1+LB2+MB3).r

Ideal for soft part of DM:
ρ̃ = |φα 〉Kαβ 〈φβ |
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PAW with Density Matrices

It is the all-electron density matrix which must be normalised:∫
ρ(r,r)dr = Ne

and idempotent: ∫
ρ(r,r′′)ρ(r′′,r′)dr′′ = ρ(r,r′)

ONETEP (& other LS-DFT codes) uses a variety of methods (puri�cation,
LNV, penalty-functionals...) to enforce these conditions while minimising
energy

For NCPPs, this means, for SNC
αβ

= 〈φα |φβ 〉

Tr(KS) = Ne

(KSK)αβ = Kαβ



The Projector Augmented Wave Method PAW in ONETEP Applications

PAW with Density Matrices

We can use the PAW overlap operator

Ŝ = 1̂+ |p̃i〉(〈ϕi|ϕj〉−〈ϕ̃i|ϕ̃j〉)〈p̃j|

to de�ne an `augmented' overlap matrix:

Sαβ = 〈φα |φβ 〉+ 〈φα |p̃i〉Oij〈p̃j|φβ 〉

which can be constructed easily with sparse matrix algebra

Retain exact same algorithms for normalisation, LNV etc:

Ne = Tr(KS) ; K = 3LSL−2LSLSL etc

so LNV/Penalty algorithms remain the same.
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PAW with Density Matrices

PS Hamiltonian retains same general form � obtained via d/dρ̃

H̃αβ = 〈φα |H̃|φβ 〉

= 〈φα |

(
−1

2
∇

2 + Ṽeff(r)+∑
ij
|p̃i〉
(

D̂ij +D1
ij− D̃1

ij

)
〈p̃j|

)
|φβ 〉

= Tαβ + Ṽe�

αβ
+ 〈φα |p̃i〉

(
D̂ij +D1

ij− D̃1
ij

)
〈p̃j|φβ 〉

Nonlocal energies are dependent on local electronic structure:

D̂ij = ∑
LM

∫
ṽH[ñ+ n̂+ ñZc](r)Q̂LM

ij (r)dr ,

D1
ij = 〈ϕi|

-1
2

∇
2 + v1

e�
|ϕj〉

D̃1
ij = 〈ϕ̃i|

-1
2

∇
2 + ṽ1

e�
|ϕ̃i〉+∑

LM

∫
ṽH[ñ1 + n̂+ ñZc](r)Q̂LM

ij (r)dr
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PAW with Density Matrices

Density is `augmented' with soft charges to get right multipole moments LM:

n̂(r) = ∑
LM

∑
ij

ρ
ijQ̂LM

ij (r)

Augmentation density is constructed in small reciprocal space FFTboxes
centered on atoms:

n̂(r) = F [∑
LM

∑
ij

ρ
ijQ̂LM

ij (G)eiG.(RI−Rbox)]

Augmenation box also used for screening of nonlocal energies

⇒All PAW extensions are con�ned to spheres around each atom

and thus are O(N)
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PAW optimisation of NGWFs

Initialise NGWFs to pseudoatomic orbitals of PAW dataset

Change of overlap matrix with NGWFs is now

∂Sβα

∂ 〈φγ |
=
(
|φα 〉+∑

ij
|p̃i〉Oij〈p̃j|φβ 〉

)
δβγ .

Leads to extra term in NGWF gradient:

∂E
∂φγ (r)

=
∂

∂φγ (r)

[Kαβ H̃βα Ne

Kκλ Sλκ

]
= Kαβ

n [H̃φβ ](r)+
(

φβ (r)+∑
ij

p̃i(r)Oij〈p̃j|φβ 〉
)

Q̃αβ
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PAW Datasets

Precalculate |ϕi〉, |ϕ̃i〉, |p̃i〉, nc(r), ñc(r), D0
ij, vH[ñZc](r)

• AtomPAW or Vanderbilt uspp datasets, in same format as

ABINIT

• Important that projectors not be too large, or NGWF gradient

su�ers

• Convergence properties equivalent to ABINIT
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Convergence - Silicon 64-atom cell
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• Converges well by all standard measures

(step length goes to zero)
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Agreement with ABINIT

Nitrogen molecule: N2
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Agreement with All-Electron Calculations

Comparison with Elk FP-LAPW code:
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Calculation times

Overhead of PAW is very low:
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Calculation times
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Augmentation

Augmentation of a matrix is a very general concept in LS-PAW

For traditional O(N3) PAW implementations, one calculates expressions like:

〈A〉= ∑
n

fn〈ψn|Â|ψn〉= ∑
n

fn〈ψ̃n|Â|ψ̃n〉+∑
n

fn〈ψ̃n|p̃i〉(〈ϕi|Â|ϕj〉−〈ϕ̃i|Â|ϕ̃j〉)〈p̃j|ψ̃n〉

For LS-PAW, we can `augment' the matrix elements in terms of local orbitals:

〈φα |Â|φβ 〉aug = 〈φα |Â|φβ 〉+ 〈φα |p̃i〉(〈ϕi|Â|ϕj〉−〈ϕ̃i|Â|ϕ̃j〉)〈p̃j|φβ 〉

So eg for dipole moment:

del = Kβα [〈φα |r|φβ 〉

+ 〈φα |p̃i〉(〈ϕi|r|ϕj〉−〈ϕ̃i|r|ϕ̃j〉)〈p̃j|φβ 〉]

= Kβα 〈φα |r|φβ 〉aug

.
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Theoretical Spectroscopy

Unoccupied states are not well-represented in
valence NGWF representation:

The conjugated polymer PPV -

poly(para-phenylene vinylene) 
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Construct new set of NGWFs and new
`conduction state' kernel to describe ψc
Project out and shift valence states so that
conduction states are lowermost

.

.

Consequently, optical spectra are similarly
poor:

20

10

10

20

0

1 2 3 4 5 6

ε
2

Energy / eV

PWPP
ONETEP

Optical spectra employ Fermi Golden Rule
with dipole approximation:

ε2(ω) =
2e2π

Ωε0
∑
v,c
|〈ψc|q̂.r|ψv〉|2δ (εc− εv− h̄ω)

O(N) diagonalisation only in minimal basis
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Theoretical Spectroscopy

With joint basis of valence and conduction
NGWFs, DOS agrees well with PWPP result:

The conjugated polymer PPV -

poly(para-phenylene vinylene) 
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Optimised conduction NGWFs can describe
all localised states of a molecule (but not
vacuum states)

Consequently, optical spectra are similarly
improved:
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However, spectra is still subject to the

fundamental limitations of DFT: bandgaps

severely underestimated!

L. E. Ratcli�, N.D.M. Hine, P.D. Haynes, Phys. Rev. B 84, 165131 (2012)
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Pressure-Induced Phase Transformations in Nanomaterials

Pressure causes phase transformations (eg ZB to RS) in CdS, CdSe nanocrystals

Optical properties of resulting nanoparticles important for sensor & photovoltaics
applications

Many interesting e�ects of ligands, size, shape, etc: See poster by Niccolo Corsini
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EELS of Carbon Nanostructures

Recent experimental results are able to address
individual functionalisations with STEM/EEL
spectroscopy and STXM:
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SrTiO3/LaAlO3 Heterostructures

Metal oxide heterostructures eg STO-LAO:

ONETEP + Dynamical Mean Field Theory (see talk of C. Weber)

may be able to elucidate behaviour of 2DEG at interface
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Conclusions

• PAW Framework integrates well into ONETEP: similarity of

underlying psinc basis to plane-waves

• Minimal overhead compared to equivalent NCPP calculation

(somewhat higher complexity of code!)

• Enables treatment of transition metals, oxides etc with feasible

cost

• Development of core-level spectroscopy in-progress

• Future extensions to NMR, EFG, etc

www.onetep.orgO
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