Linear Scaling DFT with in-situ-optimised Local Orbitals using the Projector Augmented Wave Formalism

Nicholas D.M. Hine

Thomas Young Centre, Department of Materials
Imperial College London

ONETEP Masterclass, Cambridge, 29th August 2012

Outline

1 The Projector Augmented Wave Method

PAW in ONETEP

Applications

Why PAW?

Projector Augmented Waves:

- Best aspects of PWPSP & best aspects of AE calculations
- Well-established formalism, implemented in ABINIT, VASP, PWSCF, etc
- Access to all-electron orbitals, density & potential near nucleus
- Allows softer pseudopotentials than Norm Conserving psps (many similarities to Vanderbilt usps)

P. E. Blöchl, Phys. Rev. B 50, 17953 (1994) (>8000 citations)

PAW transformation in Traditional DFT

Relates AE orbitals $|\psi_n\rangle$ to PS orbitals $|\tilde{\psi}_n\rangle$:

$$|\psi_n
angle \quad = \quad |\widetilde{\psi}_n
angle \quad + \qquad \sum_i (|\varphi_i
angle \quad - \quad |\widetilde{\varphi}_i
angle) \langle \widetilde{p}^i |\widetilde{\psi}_n
angle \quad = \tau |\widetilde{\psi}_n
angle$$

AE expectation values in terms of PS orbitals:

$$\langle A \rangle = \sum_{n} f_{n} \langle \psi_{n} | \widehat{A} | \psi_{n} \rangle = \sum_{n} f_{n} \langle \widetilde{\psi}_{n} | \tau \widehat{A} \tau | \widetilde{\psi}_{n} \rangle$$

Wavefunctions in PAW

Within a sphere around each atom:

- $|\phi_i\rangle$: AE partial waves (radial grid)
- ullet | $ilde{\phi_i}
 angle$: PS partial waves (radial OR cartesian grid)
- $|\tilde{p}^i\rangle$: PAW projectors (cartesian grid) dual to PS partial waves for complete pw basis: $\langle \tilde{p}^i | \tilde{\phi}_j \rangle = \delta_{ij}$

Kohn-Sham Eq:

$$\hat{H}|\psi_n
angle=m{arepsilon}_n|\psi_n
angle \ au^\dagger\hat{H} au|\psi_n
angle=m{arepsilon}_n au^\dagger au|\psi_n
angle$$

Modified orthogonality condition for PS wfns:

$$\langle \psi_m | \psi_n \rangle = \delta_{mn} \quad \Rightarrow \quad \langle \widetilde{\psi}_m | \hat{S} | \widetilde{\psi}_n \rangle = \delta_{mn} \quad \text{with} \quad \hat{S} = 1 + |\widetilde{p}^i\rangle (\langle \varphi_i | \varphi_i \rangle - \langle \widetilde{\varphi}_i | \widetilde{\varphi}_i \rangle) \langle \widetilde{p}^j |$$

Total Energies in PAW

AE total energy is:

$$E_T = \sum_{n} f_n \langle \psi_n | \frac{-1}{2} \nabla^2 | \psi_n \rangle + E_H[n_v + n_{Zc}] + E_{xc}[n_v + n_c] + E_{II}$$

Decomposes as:

$$E = \widetilde{E} + E^1 - \widetilde{E}^1 \,, \tag{1}$$

where:

- ullet refers to a quantity evaluated for the PS orbitals
- \bullet A^1 refers to a quantity evaluated for the AE partial waves
- ullet \widetilde{A}^1 refers to a quantity evaluated for the PS partial waves
- ullet \widehat{A} refers to a quantity involving the compensation density

Densities in PAW

For the density, we write

$$\begin{split} n(\mathbf{r}) &= \sum_n f_n |\psi_n(\mathbf{r})|^2 &= \tilde{n}(\mathbf{r}) + n^1(\mathbf{r}) - \tilde{n}^1(\mathbf{r}) \\ &= \sum_n f_n |\tilde{\psi}_n(\mathbf{r})|^2 + \sum_{ij} \rho^{ij} \varphi_i(\mathbf{r}) \varphi_j(\mathbf{r}) - \sum_{ij} \rho^{ij} \tilde{\varphi}_i(\mathbf{r}) \tilde{\varphi}_j(\mathbf{r}) \end{split}$$

 ho^{ij} is a density matrix for the sphere part:

$$\rho^{ij} = \sum_{n} f_n \langle \tilde{\psi}_n | \tilde{p}^i \rangle \langle \tilde{p}^j | \tilde{\psi}_n \rangle$$

$$\bigcirc n(\mathbf{r}) = \bigcirc + \bigcirc n(\mathbf{r}) - \bigcirc \tilde{n}^{1}(\mathbf{r})$$

 $\tilde{n}(\mathbf{r})$ can be treated on regular grid, but $n^1(\mathbf{r})$ and $\tilde{n}^1(\mathbf{r})$ must be treated on radial grid around each atom for high accuracy.

Outline

1 The Projector Augmented Wave Method

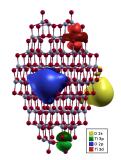
2 PAW in ONETEP

Applications

ONETEP

Represent DM with non-orthogonal local orbitals $\phi_{\alpha}(\mathbf{r})$ and density kernel $K^{\alpha\beta}$

$$\rho(\mathbf{r}, \mathbf{r}') = \phi_{\alpha}(\mathbf{r}) K^{\alpha\beta} \phi_{\beta}(\mathbf{r}')$$



Energy:
$$E_T = \text{Tr}(KH) - E_{dc}$$

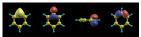
- Local orbitals, $H_{\alpha\beta} = \langle \phi_{\alpha} | \hat{H} | \phi_{\beta} \rangle$ and $S_{\alpha\beta} = \langle \phi_{\alpha} | \phi_{\beta} \rangle$ and sparse matrices
- Density matrix nearsighted for insulators, so $K^{\alpha\beta}$ is sparse.
- Enforce normalisation and idempotency of DM while minimising energy E_T to optimise kernel $K^{lphaeta}$
- Optimise form of $\phi_{\alpha}(\mathbf{r})$ via systematic underlying basis

No use of eigenstates!

PAW in ONETER

ONETEP

NGWF: in-situ optimisation

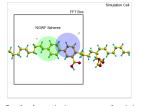


Psinc basis equivalent to plane-waves:

Minimal local orbital basis. systematic wrt real & recip-space cutoffs

FFT Box Approximation

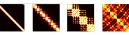
Local $\phi_{\alpha} \Rightarrow$ moving FFT box Kinetic/NL in recip-space



Strictly O(N) $H_{\alpha\beta}$ and $n(\mathbf{r})$ evaluation

Sparse Matrix Algebra

Efficient parallelisation and load balance



Adaptive Kernel Optimisation Purification / Penalty / LNV

O(N) matrix algebra and kernel optimisation

Advantages of ONETEP

Accurate: equivalent to plane waves Scales as O(N) with system size High parallel efficiency on thousands of cores Vacuum is 'free'

Problems

Only supports NCPPs: hard to treat transition metals, oxides etc

No use of eigenstates: how to apply PAW transformation?

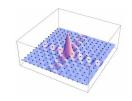
www.onetep.org; CK Skylaris, PD Haynes, AA Mostofi and MC Payne, J. Chem. Phys. 122, 084119 (2005) NDM Hine, PD Haynes, AA Mostofi, C-K Skylaris, MC Payne, Comput. Phys. Commun. 180, 1041 (2009)

Need equivalent PAW transformation on DM:

$$ho = \widetilde{
ho} + \sum_{ij} \left(|arphi_i
angle \langle \widetilde{p}^i | \widetilde{
ho} | \widetilde{p}^j
angle \langle arphi_j | - |\widetilde{arphi}_i
angle \langle \widetilde{p}^i | \widetilde{
ho} | \widetilde{p}^j
angle \langle \widetilde{arphi}_j |
ight)$$

NGWFs constructed out of psinc functions, equivalent to plane-waves: $\phi_{\alpha}(\mathbf{r}) = \sum_i c_{\alpha i} D(\mathbf{r} - \mathbf{r}_i)$

$$D(\mathbf{r}) = \frac{1}{N_1 N_2 N_3} \sum_{K=-J_1}^{J_1} \sum_{L=-J_2}^{J_2} \sum_{M=-J_3}^{J_3} e^{i(K\mathbf{B}_1 + L\mathbf{B}_2 + M\mathbf{B}_3) \cdot \mathbf{r}}$$



Ideal for soft part of DM:

$$\widetilde{\rho} = |\phi_{\alpha}\rangle K^{\alpha\beta}\langle\phi_{\beta}|$$

It is the all-electron density matrix which must be normalised:

$$\int \boldsymbol{\rho}(\mathbf{r},\mathbf{r})\,\mathrm{d}\mathbf{r}=N_e$$

and idempotent:

$$\int \rho(\mathbf{r},\mathbf{r}'')\rho(\mathbf{r}'',\mathbf{r}')\,\mathsf{d}\mathbf{r}'' = \rho(\mathbf{r},\mathbf{r}')$$

ONETEP (& other LS-DFT codes) uses a variety of methods (purification, LNV, penalty-functionals...) to enforce these conditions while minimising energy

For NCPPs, this means, for $S^{
m NC}_{lphaeta}=\langle\phi_lpha|\phi_eta
angle$

$$\operatorname{Tr}(KS) = N_e$$

$$(KSK)^{\alpha\beta} = K^{\alpha\beta}$$

We can use the PAW overlap operator

$$\widehat{S} = \widehat{1} + |\widetilde{p}^i\rangle (\langle \varphi_i | \varphi_i\rangle - \langle \widetilde{\varphi}_i | \widetilde{\varphi}_i\rangle) \langle \widetilde{p}^j |$$

to define an 'augmented' overlap matrix:

$$S_{\alpha\beta} = \langle \phi_{\alpha} | \phi_{\beta} \rangle + \langle \phi_{\alpha} | \widetilde{p}^{i} \rangle O_{ij} \langle \widetilde{p}^{j} | \phi_{\beta} \rangle$$

which can be constructed easily with sparse matrix algebra

Retain exact same algorithms for normalisation, LNV etc:

$$N_e = \text{Tr}(KS)$$
; $K = 3LSL - 2LSLSL$ etc

so LNV/Penalty algorithms remain the same.

PS Hamiltonian retains same general form – obtained via $\mathrm{d}/\mathrm{d}\widetilde{
ho}$

$$\begin{split} \tilde{H}_{\alpha\beta} &= \langle \phi_{\alpha} | \tilde{H} | \phi_{\beta} \rangle \\ &= \langle \phi_{\alpha} | \left(-\frac{1}{2} \nabla^{2} + \tilde{V}_{\text{eff}}(\mathbf{r}) + \sum_{ij} |\tilde{p}_{i}\rangle \left(\hat{D}_{ij} + D^{1}_{ij} - \tilde{D}^{1}_{ij} \right) \langle \tilde{p}_{j} | \right) | \phi_{\beta} \rangle \\ &= T_{\alpha\beta} + \tilde{V}^{\text{eff}}_{\alpha\beta} + \langle \phi_{\alpha} | \tilde{p}_{i} \rangle \left(\hat{D}_{ij} + D^{1}_{ij} - \tilde{D}^{1}_{ij} \right) \langle \tilde{p}_{j} | \phi_{\beta} \rangle \end{split}$$

Nonlocal energies are dependent on local electronic structure:

$$\begin{split} \widehat{D}_{ij} &= \sum_{LM} \int \widetilde{v}_{H}[\widetilde{n} + \widehat{n} + \widetilde{n}_{Zc}](\mathbf{r}) \widehat{Q}_{ij}^{LM}(\mathbf{r}) d\mathbf{r} , \\ D_{ij}^{1} &= \langle \varphi_{i} | \frac{1}{2} \nabla^{2} + v_{\text{eff}}^{1} | \varphi_{j} \rangle \\ \widetilde{D}_{ij}^{1} &= \langle \widetilde{\varphi}_{i} | \frac{1}{2} \nabla^{2} + \widetilde{v}_{\text{eff}}^{1} | \widetilde{\varphi}_{i} \rangle + \sum_{LM} \int \widetilde{v}_{H}[\widetilde{n}^{1} + \widehat{n} + \widetilde{n}_{Zc}](\mathbf{r}) \widehat{Q}_{ij}^{LM}(\mathbf{r}) d\mathbf{r} \end{split}$$

Density is 'augmented' with soft charges to get right multipole moments LM:

$$\widehat{n}(\mathbf{r}) = \sum_{LM} \sum_{ij} \rho^{ij} \widehat{Q}_{ij}^{LM}(\mathbf{r})$$

Augmentation density is constructed in small reciprocal space FFTboxes centered on atoms:

$$\widehat{n}(\mathbf{r}) = \mathscr{F}\left[\sum_{LM}\sum_{ij}\rho^{ij}\widehat{Q}_{ij}^{LM}(\mathbf{G})e^{i\mathbf{G}.(\mathbf{R}_{I}-\mathbf{R}_{\text{box}})}\right]$$

Augmenation box also used for screening of nonlocal energies

 \Rightarrow All PAW extensions are confined to spheres around each atom and thus are O(N)

PAW optimisation of NGWFs

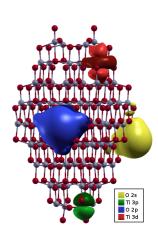
Change of overlap matrix with NGWFs is now

Initialise NGWFs to pseudoatomic orbitals of PAW dataset

$$rac{\partial S_{etalpha}}{\partial \langle \phi_{\gamma}|} = \Big(|\phi_{lpha}
angle + \sum_{ij} | ilde{p}_i
angle O_{ij} \langle ilde{p}_j |\phi_{eta}
angle \Big) oldsymbol{\delta}_{eta\gamma} \,.$$

Leads to extra term in NGWF gradient:

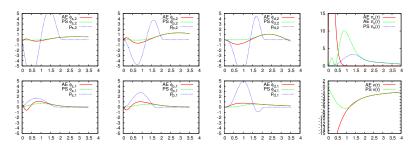
$$\begin{split} \frac{\partial E}{\partial \phi_{\gamma}(\mathbf{r})} &= \frac{\partial}{\partial \phi_{\gamma}(\mathbf{r})} \left[\frac{K^{\alpha\beta} \tilde{H}_{\beta\alpha} N_{e}}{K^{\kappa\lambda} S_{\lambda\kappa}} \right] \\ &= K_{n}^{\alpha\beta} [\tilde{H} \phi_{\beta}](\mathbf{r}) + \left(\phi_{\beta}(\mathbf{r}) + \sum_{ij} \tilde{p}_{i}(\mathbf{r}) O_{ij} \langle \tilde{p}_{j} | \phi_{\beta} \rangle \right) \tilde{Q}^{\alpha\beta} \end{split}$$



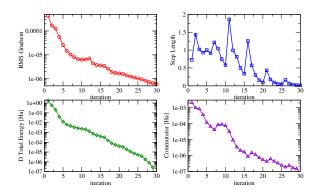
PAW Datasets

Precalculate $|\phi_i\rangle$, $|\tilde{\phi}_i\rangle$, $|\tilde{p}^i\rangle$, $n_c(r)$, $\tilde{n}_c(r)$, D^0_{ij} , $v_{\rm H}[\tilde{n}_{Zc}](r)$

- AtomPAW or Vanderbilt uspp datasets, in same format as ABINIT
- Important that projectors not be too large, or NGWF gradient suffers
- Convergence properties equivalent to ABINIT



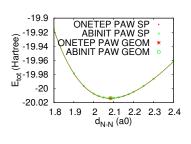
Convergence - Silicon 64-atom cell

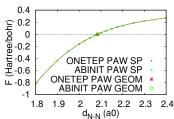


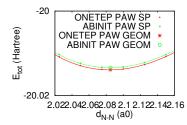
 Converges well by all standard measures (step length goes to zero)

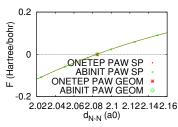
Agreement with ABINIT

Nitrogen molecule: N₂



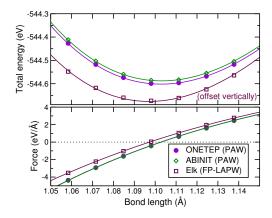






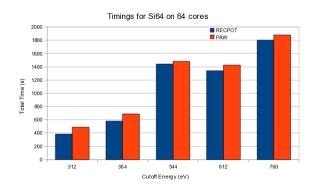
Agreement with All-Electron Calculations

Comparison with Elk FP-LAPW code:

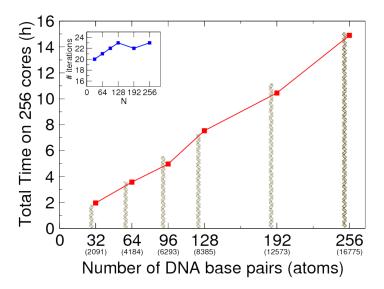


Calculation times

Overhead of PAW is very low:



Calculation times



Augmentation

Augmentation of a matrix is a very general concept in LS-PAW

For traditional $O(N^3)$ PAW implementations, one calculates expressions like:

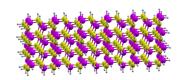
$$\langle A \rangle = \sum_{n} f_{n} \langle \psi_{n} | \widehat{A} | \psi_{n} \rangle = \sum_{n} f_{n} \langle \widetilde{\psi}_{n} | \widehat{A} | \widetilde{\psi}_{n} \rangle + \sum_{n} f_{n} \langle \widetilde{\psi}_{n} | \widetilde{p}^{i} \rangle (\langle \varphi_{i} | \widehat{A} | \varphi_{j} \rangle - \langle \widetilde{\varphi}_{i} | \widehat{A} | \widetilde{\varphi}_{j} \rangle) \langle \widetilde{p}^{j} | \widetilde{\psi}_{n} \rangle$$

For LS-PAW, we can 'augment' the matrix elements in terms of local orbitals:

$$\langle \phi_{\alpha} | \widehat{A} | \phi_{\beta} \rangle^{\text{aug}} = \langle \phi_{\alpha} | \widehat{A} | \phi_{\beta} \rangle + \langle \phi_{\alpha} | \widetilde{p}^{i} \rangle (\langle \varphi_{i} | \widehat{A} | \varphi_{j} \rangle - \langle \widetilde{\varphi}_{i} | \widehat{A} | \widetilde{\varphi}_{j} \rangle) \langle \widetilde{p}^{j} | \phi_{\beta} \rangle$$

So eg for dipole moment:

$$\begin{aligned} \mathbf{d}_{\mathrm{el}} &= K^{\beta\alpha} [\langle \phi_{\alpha} | \mathbf{r} | \phi_{\beta} \rangle \\ &+ \langle \phi_{\alpha} | \widetilde{p}^{i} \rangle (\langle \phi_{i} | \mathbf{r} | \phi_{j} \rangle - \langle \widetilde{\phi}_{i} | \mathbf{r} | \widetilde{\phi}_{j} \rangle) \langle \widetilde{p}^{j} | \phi_{\beta} \rangle] \\ &= K^{\beta\alpha} \langle \phi_{\alpha} | \mathbf{r} | \phi_{\beta} \rangle^{\mathrm{aug}} \end{aligned}$$



Outline

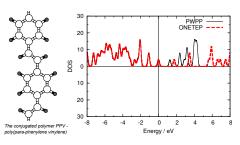
1 The Projector Augmented Wave Method

2 PAW in ONETEP

3 Applications

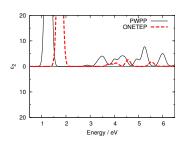
Theoretical Spectroscopy

Unoccupied states are not well-represented in valence NGWF representation:



Construct new set of NGWFs and new 'conduction state' kernel to describe ψ_c Project out and shift valence states so that conduction states are lowermost

Consequently, optical spectra are similarly poor:



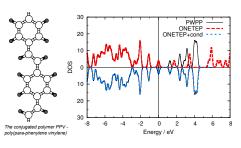
Optical spectra employ Fermi Golden Rule with dipole approximation:

$$\varepsilon_2(\omega) = \frac{2e^2\pi}{\Omega\varepsilon_0} \sum_{\nu,c} |\langle \psi_c | \hat{\mathbf{q}}.\mathbf{r} | \psi_\nu \rangle|^2 \delta(\varepsilon_c - \varepsilon_\nu - \hbar\omega)$$

O(N) diagonalisation only in *minimal basis*

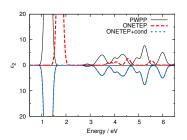
Theoretical Spectroscopy

With joint basis of valence and conduction NGWFs, DOS agrees well with PWPP result:



Optimised conduction NGWFs can describe all localised states of a molecule (but not vacuum states)

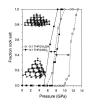
Consequently, optical spectra are similarly improved:



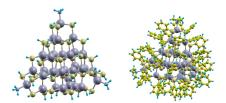
However, spectra is still subject to the fundamental limitations of DFT: bandgaps severely underestimated!

Pressure-Induced Phase Transformations in Nanomaterials

Pressure causes phase transformations (eg ZB to RS) in CdS, CdSe nanocrystals



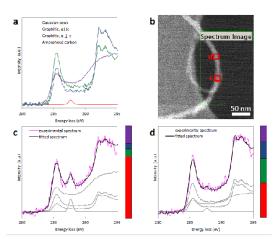
Optical properties of resulting nanoparticles important for sensor & photovoltaics applications

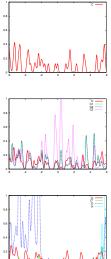


Many interesting effects of ligands, size, shape, etc. See poster by Niccolo Corsini

EELS of Carbon Nanostructures

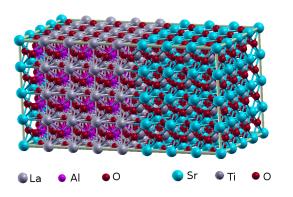
Recent experimental results are able to address individual functionalisations with STEM/EEL spectroscopy and STXM:





SrTiO3/LaAlO3 Heterostructures

Metal oxide heterostructures eg STO-LAO:



ONETEP + Dynamical Mean Field Theory (see talk of C. Weber) may be able to elucidate behaviour of 2DEG at interface

Conclusions

- PAW Framework integrates well into ONETEP: similarity of underlying psinc basis to plane-waves
- Minimal overhead compared to equivalent NCPP calculation (somewhat higher complexity of code!)
- Enables treatment of transition metals, oxides etc with feasible cost
- Development of core-level spectroscopy in-progress
- Future extensions to NMR, EFG, etc

