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Optical properties of large systems

Bacteriochlorophyll in FMO

I Effects due to protein
environment

I Optical properties different
from isolated molecule

Semiconductor nanorod

I Surface effects and
quantum confinement

I Optical properties different
from bulk crystal

Ideally, we want to treat the entire system to include all effects



Optical properties of large systems: How?

There are a number of different methods to compute optical
spectra. Which one is the most appropriate depends on a
number of different factors:

I Time dependent density functional theory (TDDFT) vs.
Many-Body techniques (GW+BSE)

I System sizes accessible vs. accuracy of the method
I Computational complexity of the algorithm: For large

systems, we ideally require a method scaling linearly with
system size

For the large scale systems of interest, TDDFT is the most
promising since it is computationally cheap in its simplest
approximation.



TDDFT: Time-domain vs. linear response

Time-domain

i
∂

∂t
ψKS

v (r, t) = HψKS
v (r, t)

I Explicit propagation of the
KS orbitals in time

I The entire spectrum is
obtained, but no
information on individual
excitations

I Linear-scaling algorithms
are known, but still
challenging

Linear-response

A~X = ω~X

I Eigenvalue equation for an
effective 2-particle
Hamiltonian

I Yields energies, transition
densities and oscillator
strength for each excitation

I Linear-scaling algorithms in
principle possible but
harder to achieve



The TDDFT eigenvalue equation

In linear response TDDFT (Tamm-Dancoff approximation), the
excitation energies are solutions to the eigenvalue equation

A~X = ω~X

where

Acv ,c′v ′ = δc,c′δv ,v ′(εKS
c − εKS

v ) + Kcv ,c′v ′

Kcv ,c′v ′ =

∫
d3rd3r ′

[
1

|r− r′|
+ fxc(r, r′, ω)

]
ψ∗c(r)ψv (r)ψ∗v ′(r′)ψc′(r′)

I The ALDA approximation: fxc(r, r′, ω) = f LDA
xc (r)

I Iterative solutions: Only require the action q = A~X
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DFT vs. Linear-scaling DFT

DFT

I KS-orbitals are delocalised
over the entire system

I Keeping O(N) orbitals
orthogonal to each other→
O(N3) scaling

LS-DFT

I Use atom-centered
nonorthogonal orbitals that
are very localised

I Move from a KS state
formalism to a density
matrix formalism



Linear-scaling DFT

In linear-scaling DFT, the valence density matrix is expanded in
terms of atom-centered nonorthogonal localised functions {φα}

ρ(r, r′) =
occ∑
v

ψKS
v (r)ψKS∗

v (r′) = φα(r)P{v}αβφ∗β(r′)

I {φα} are optimised in situ during a ground state calculation
→ minimal number is needed to span valence space

I Linear scaling is achieved by truncating the density matrix
with distance→ P{v} is sparse

I No reference to individual Kohn-Sham eigenstates and
energies



Conduction optimisation
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I Optimisation of a second set of localised functions {χα}
and effective density matrix P{c} to represent low energy
part of conduction space 2

2L. E. Ratcliff, N. D. M. Hine, and P. D. Haynes, Phys. Rev. B 84,
165131(2011)
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Response density matrix

The transition density ρ{1} associated with canonical
eigenvector ~X of a low energy excitation ω can be expressed as

ρ{1}(r) = χα(r)P{1}αβφβ(r)

where P{1} is the response density matrix
I P{1} is a representation of ~X expressed in terms of {χα}

and {φα} → very efficient representation
I Define the action q = A~X in mixed {χα} and {φα}

representation
I If calculating q is linear-scaling, lowest excitation energy

can be found in O(N) operations using iterative techniques



The TDDFT operator in {φ} and {χ} representation

The action q = A~X in mixed {φ} and {χ} representation can be
written:

qχφ = P{c}HχP{1} − P{1}HφP{v} + P{c}V{1}χφSCF P{v}

I Fully O(N) if all involved density matrices are truncated
I Can be used to generate a gradient for conjugate gradient

algorithm

I Multiple excitations: Optimise {P{1}i } silmutaneously→
O(N2

ω) due to orthonormalisations



In practice, we minimise the function:

Ω =
Nω∑
i

ωi =
Nω∑
i

x†Ax
x†x

=
Nω∑
i

 Tr
[
P{1}†i Sχqχφi Sφ

]
Tr
[
P{1}

†

i SχP{1}i Sφ
]


by constructing the (tensorially correct) gradients of Ω with
respect to all response density matrices

{
P{1}i ; i = 1, ...Nω

}
:

(g⊥i )αβ = (qχφi )αβ −
∑

j

Tr
[
P{1}

†

j Sχqχφi Sφ
]

(P{1}j )αβ

The gradients can be used to construct search directions for a
conjugate gradients algorithm.
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Silane (SiH4): Transition density

ρ{1}(r) = χα(r)P{1}αβφβ(r)



Silane (SiH4): Electron and hole densities

Hole density

P{hole} = P{1}SχP{1}†

Electron density

P{elec} = P{1}†SφP{1}



Chlorophyll a
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I Absorbtion spectrum of chlorophyll a generated from the
12 lowest excitation energies compared with the
experimental spectrum of chlorophyll a in diethyl ether 3

3H. Du, R. C. A. Fuh, J. Li, L. A. Corkan, and J. S. Lindsey, Photochem.
Photobiol. 68, 141 (1998)



Pentacene

ONETEP (1 H) ONETEP (2 H) NWCHEM(aug-cc-pVTZ)
1.883 (0.050) 1.855 (0.049) 1.844 (0.044)

2.416 2.402 2.408
2.961 2.942 2.961
3.143 3.121 3.115
3.419 3.405 3.412

3.852 (0.034) 3.831 (0.035) 3.839(0.030)
3.918 3.900 3.908
4.003 4.000 4.002

4.029 (0.011) 4.032 (0.013) 4.029(0.012)
4.162 4.106 4.159

...
...

...
4.311(2.58) 4.281(3.87) 4.270(3.88)

Lowest excitation energies of Pentacene. Energies are given in
eV, oscillator strengths in brackets



GaAs nanorod with Hydrogen termniation
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I Convergence of excitation energy with
respect to response matrix truncation

Response matrix truncation accurate for localised excitations,
but misses delocalised excitations



(10,0) Carbon nanotube: Linear scaling test
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Truncation: 60 Bohr

I Time taken for a single conjugate gradient iteration vs.
system size

I Clear linear scaling for truncated response density matrix
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Hybrid functionals

Hybrid functionals can be included in the formalism in a
straightforward fashion by adding an extra term

(
gαβHF

)
i

= P{c}αγ
(
∂EHF

∂P{1}i

)
γδ

P{v}δβ

to the gradient, with(
∂EHF

∂P{1}i

)i

αγ

= −2cHF P{1}βδi

∫ ∫
χα(r)φγ(r′)χβ(r)φδ(r′)

|r− r′|
drdr′

I Very similar expression to the one needed for Hybrid
functionals in ground state DFT

I For truncated density matrices, evaluating gαβHF can be
made to scale linearly with system size



TDDFT forces

Forces for each excitation energy can be found by
differentiating

L[x , ψKS
p , ω,Z ,Λ] = EKS[ψKS

v ] + LTDDFT[x , ψKS
p , ω]

+Zcv 〈ψKS
c |Ĥ|ψKS

v 〉 − Λpq
(
〈ψKS

p |ψKS
q 〉 − δpq

)
with respect to nuclear coordinates.

I Allows for excited state geometry optimisations
I Can be written in form of the linear-scaling TDDFT

formalism→ O(N) effort per excitation energy
I Requires the calculation of effective Lagrange multipliers

Zcv and Λpq



TDDFT forces: Preliminary results (Benzene)

Electron-Hole Density Relaxation Density ρ{z}



Non-adiabatic coupling terms

Non-adiabatic coupling vector di between a ground state Ψ0
and excited state Ψi is defined as

di = 〈Ψ0|
∂Ψi

∂Rγ
〉

In linear response TDDFT formalism the expression reduces to

di =
1
ωi

∫
drvne

γ (r)ρ
{1}
i (r)

I Allows for calculating hopping probabilities between
excited states potential energy surfaces

I NAC vectors and excited state forces are the main
ingredients to non-adiabatic molecular dynamics
simulations



Conclusion

I We have introduced a linear-scaling TDDFT algorithm
capable of solving for low energy excitations of systems of
thousands of atoms

I Main limitation: Excitations with large contributions from
continuum conduction states are unlikely to be
representable in terms of {χα} and {φα}

I A truncation of the response density matrix (and thus O(N)
calculations) is possible for relatively localised excitations
but fails for very delocalised excitations

I The dual representation approach is flexible and efficient
even for dense P{1}

I Future developments will allow calculations involving fully
non-adiabatic molecular dynamics
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