Linear-scaling, tensorially invariant, self-consistent projector constrained Density Functional Theory in ONETEP

<u>G. Teobaldi</u>,^a D. D. O'Regan,^b N. D. M. Hine,^c A. A. Mostofi^d

^aStephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, UK. Email: g.teobaldi@liv.ac.uk

^bTheory and Simulation of Materials, EPFL, Lausanne, Switzerland

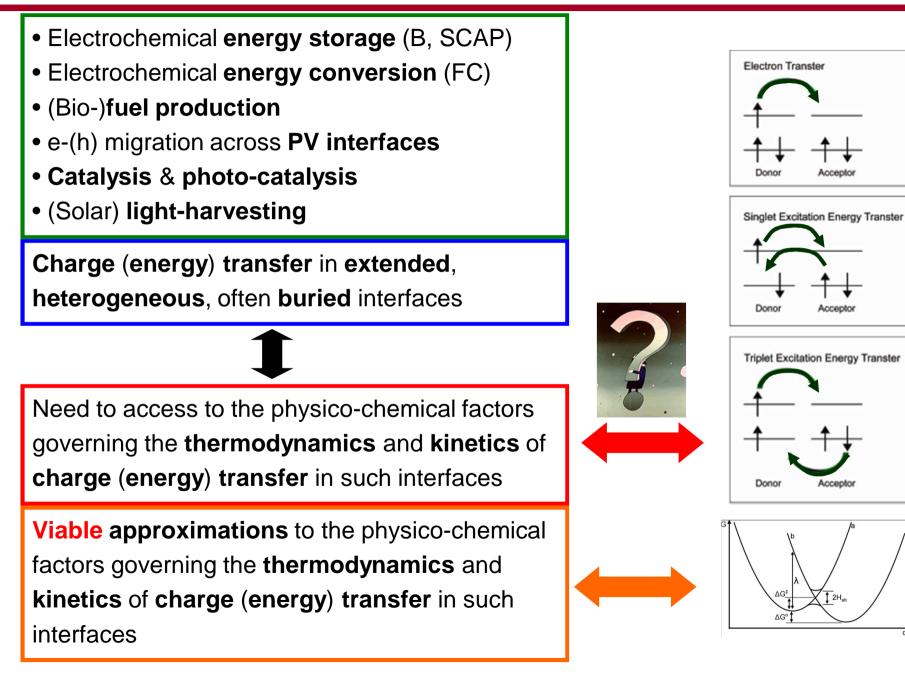
^cDepartment of Physics, Cavendish Laboratory, Cambridge University, UK

^dDepartment of Materials and Physics, Imperial College London, UK

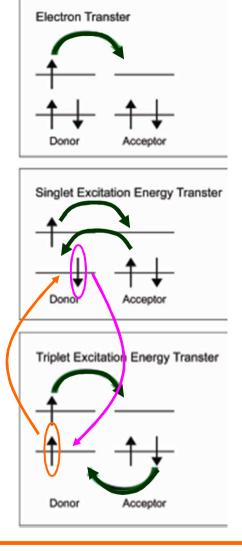
EP/1004483/1 EP/G05567X/1

Pioneering research and skills

Motivation: need of atomic-level insight in energy materials & interfaces

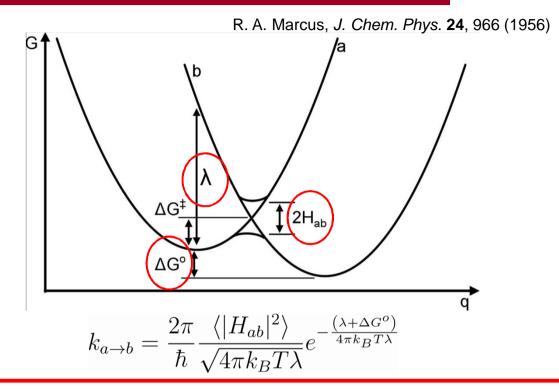


Electron coupling and e-, h-, energy-transfer (in condensed phases)



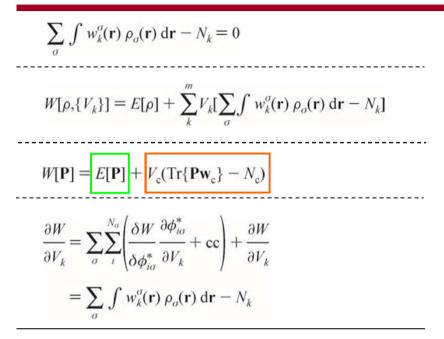
$S \leftrightarrow T$ inter-system crossing

Acc. Chem. Res. 42, 509 (2009)



- Selectively localise e/h/e-h pair on 'a' and 'b'
- Optimise (the geometry of the) system on the 'a' and 'b' diabatic) electronic potential energy surfaces \rightarrow evaluate ΔG^{o} , λ
- \bullet Approximate many-body electronic wave-functions $\Psi_{a},\,\Psi_{b}$
- Approximate non-adiabatic coupling $H_{ab} = \langle \Psi_a | H_{el} | \Psi_b \rangle$ (H_{el} is not diagonal in the {a,b} diabatic representation)

Constrained-DFT [and (approximated) diabatic states: $\tau_{ij} = \langle \psi_i | \nabla_R \psi_j \rangle = 0; \quad \nabla \times \tau = \tau \times \tau$]



$$\frac{\partial^2 W}{\partial V_k \partial V_l} = \sum_{\sigma} \sum_{i}^{N_{\sigma}} \int w_k^{\sigma}(\mathbf{r}) \, \phi_{i\sigma}^*(\mathbf{r}) \frac{\delta \phi_{i\sigma}(\mathbf{r})}{\delta [V_l \, w_l^{\sigma}(\mathbf{r}')]} w_l^{\sigma}(\mathbf{r}') \, \mathrm{d}\mathbf{r} \, \mathrm{d}\mathbf{r}' + \mathrm{cc}$$
$$= \sum_{\sigma} \sum_{i}^{N_{\sigma}} \int w_k^{\sigma}(\mathbf{r}) \, \phi_{i\sigma}^*(\mathbf{r}) \sum_{a \neq i} \frac{\phi_{a\sigma}^*(\mathbf{r}') \, \phi_{i\sigma}(\mathbf{r}'')}{\epsilon_{i\sigma} - \epsilon_{a\sigma}} \phi_{a\sigma}(\mathbf{r})$$
$$w_l^{\sigma}(\mathbf{r}') \, \mathrm{d}\mathbf{r} \, \mathrm{d}\mathbf{r}' + \mathrm{cc}$$
$$= \frac{N_{\sigma}}{2} \sum_{i}^{N_{\sigma}} \sum_{\sigma} \frac{\langle \phi_{i\sigma} | w_k^{\sigma} | \phi_{a\sigma} \rangle \langle \phi_{i\sigma} | w_l^{\sigma} | \phi_{a\sigma} \rangle}{k_i^{\sigma} | \phi_{a\sigma} \rangle}$$

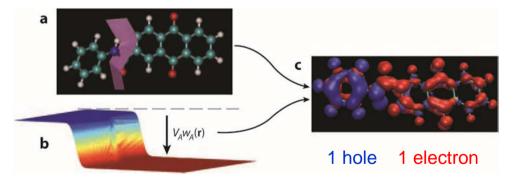
$$=2\sum_{\sigma}\sum_{i}^{N_{\sigma}}\sum_{a>N_{\sigma}}\frac{\langle\phi_{i\sigma}|w_{k}^{\circ}|\phi_{a\sigma}\rangle\langle\phi_{i\sigma}|w_{l}^{\circ}|\phi_{a\sigma}\rangle}{\epsilon_{i\sigma}-\epsilon_{a\sigma}}$$
(6)

 $\nabla_{\mathbf{A}}W = \nabla_{\mathbf{A}}E + V_{\mathbf{c}}\sum_{\lambda\nu}P_{\lambda\nu}\nabla_{\mathbf{A}}W_{\mathbf{c}\lambda\nu}$

- 1. Add constrain on the (e) density [electron/spin-density localisation...]
- **2. Build a constrained functional W** [via the Lagrange multipliers V_k]

3. Reformulate W in terms of the density matrix (P)

4. Maximize W (concave) WRT P & V_k



5. atomic forces

[various definition of w_c: Löwdin, Becke, Bader, etc population analysis)]

B. Kaduk et al. Chem. Rev 112, 321 (2012)

Linear-scaling Density Functional Theory in ONETEP

- State-of-the art linear-scaling DFT code, <u>capable of treating tens</u> of thousands of atoms.
- Reformulates Kohn-Sham DFT in terms of the single-particle density matrix.
- Uses localized functions (NGWFs or Non-orthogonal Generalized Wannier Functions).
- Linear scaling is achieved by exploiting
 - the sparsity of the density kernel, and
 - the exponential decay of the density matrix.
 - ... by the introduction of spatial cutoffs for the kernel and the NGWFs.
- Achieves near-complete basis set accuracy.
- Fully parallel, portable.

$$\rho\left(\mathbf{r},\mathbf{r}'\right) = \sum_{\alpha\beta} \phi_{\alpha}\left(\mathbf{r}\right) K^{\alpha\beta} \phi_{\beta}^{*}\left(\mathbf{r}'\right)$$

$$\rho\left(\mathbf{r},\mathbf{r}'\right) \to 0 \text{ as } |\mathbf{r}-\mathbf{r}'| \to \infty$$

$$\phi_{\alpha}(\mathbf{r}) = \sum_{i} D_{i}(\mathbf{r}) C_{i,\alpha}$$

psinc functions, equivalent to plane waves

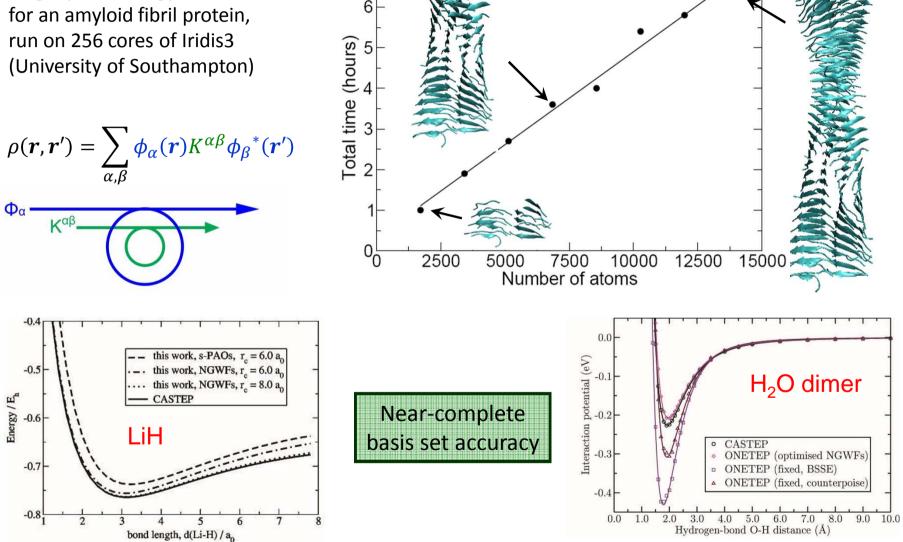
C.-K. Skylaris, P. D. Haynes, A. A. Mostofi and M. C. Payne, J. Chem. Phys. 122, 084119 (2005)

Linear-scaling Density Functional Theory in ONETEP

www.onetep.org

Single-point energy calculation for an amyloid fibril protein, run on 256 cores of Iridis3 (University of Southampton)

Energy / E_h



a) Comp. Phys. Comm. 180, 1041 (2009),b) Phys. Rev. B 66, 035119 (2002)

Projector constrained-DFT in ONETEP

1. For each spin-channel σ , and cDFT-site *I*, augment the DFT energy by the difference from the **targeted electronic population** [(Δ)N_{(I)(σ)}] times the **constraining potential** (U_{q/s})

$$E_{cDFT} = E_{DFT} + \sum_{I=1}^{N_{sites}} \sum_{\sigma=1}^{2} \underbrace{U_q^{(I)(\sigma)}}_{q} \left(Tr \left[n^{(I)(\sigma)} \right] - \underbrace{N_{(I)(\sigma)}}_{I} \right) + \sum_{I=1}^{N_{sites}} \underbrace{U_s^{(I)}}_{s} \left(Tr \left[n^{(I)(\uparrow)} \right] - Tr \left[n^{(I)(\downarrow)} \right] - \underbrace{\Delta N_{(I)}}_{I} \right)$$

where the tensorially invariant¹ subspace occupancy of the *I*th cDFT-site reads:

$$n^{(I)(\sigma)} = n^{(I)(\sigma)m}{}_{m'} = O^{(I)mm''} \langle \varphi_{m''}^{(I)} \mid \phi_{\alpha} \rangle K^{(\sigma)\alpha\beta} \langle \phi_{\beta} \mid \varphi_{m'}^{(I)} \rangle$$

with

$$O_{mm'}^{(I)} = \langle \varphi_m^{(I)} \mid \varphi_{m'}^{(I)} \rangle, \qquad \mid \varphi^{(I)m} \rangle = \mid \varphi_{m'}^{(I)} \rangle O^{(I)m'm}, \qquad O_{mm''}^{(I)} O^{(I)m''m'} = \delta_m^{m'}$$

2. Augment (σ -dependent) DFT Hamiltonian with (σ -dependent) cDFT contributions, calculated as derivative of the cDFT correction with respect to an arbitrary density Kernel:

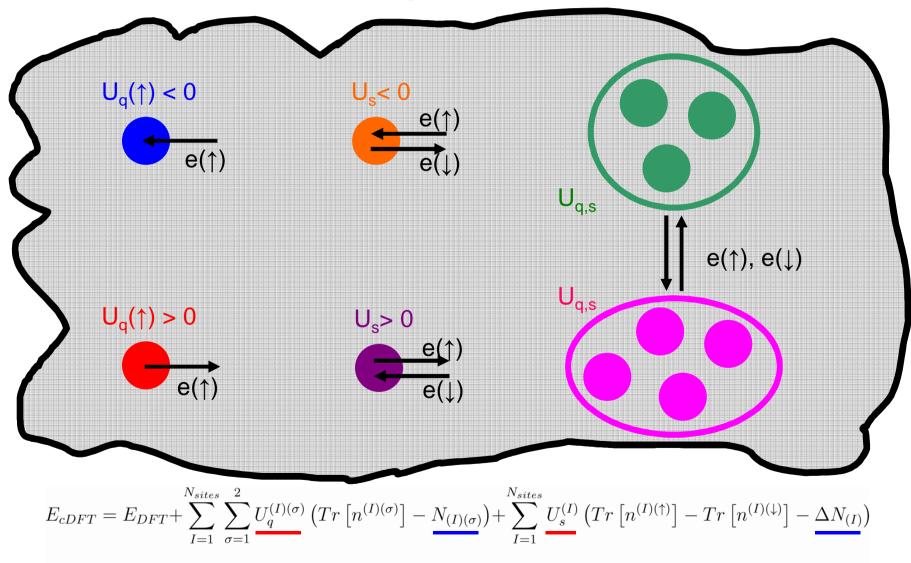
$$H_{\beta\alpha}^{cDFT(\sigma)} = \left[\underline{U_q^{(\sigma)}} + (-1)^{1+\sigma} \underline{U_s}\right] \left[\frac{\partial n^m {m^{(\sigma)}}}{\partial K^{\alpha\beta(\sigma)}}\right] = \left[\underline{U_q^{(\sigma)}} + (-1)^{1+\sigma} \underline{U_s}\right] \left[V_{\beta m} O^{mm''} W_{m''\alpha}\right]$$

$$V_{\beta m} = \langle \phi_{\beta} \mid \varphi_{m} \rangle, \qquad W_{m''\alpha} = V_{\alpha m''}^{\dagger} = \langle \varphi_{m''} \mid \phi_{\alpha} \rangle$$

[1] a) D. D. O'Regan *et al.*, *Phys. Rev. B* 82, 081102 (2010); b) D. D. O'Regan *et al.*, *ibid.* 83, 245124 (2011);
c) D. D. O'Regan *et al.*, *ibid.* 85, 085108 (2012).

So, what are we doing in practice?

...(just) adding attractive/repulsive potentials to **constrain** subspace **populations**, **population differences**, and/or **magnetic moments** (**differences**)



Choosing the projectors for the cDFT-subspaces

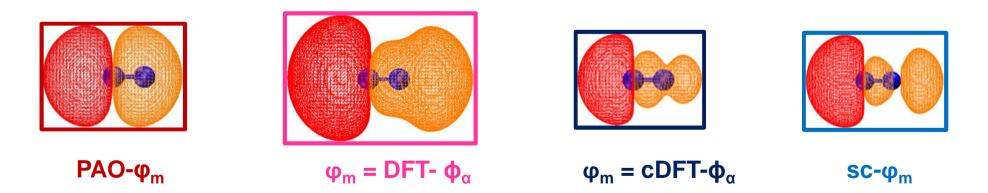
• The cDFT functional is constructed using the occupancy matrix (*n*) of the localised cDFT-projectors φ_m

 $n^{(I)(\sigma)} = n^{(I)(\sigma)m}{}_{m'} = O^{(I)mm''} \langle \varphi_{m''}^{(I)} \mid \phi_{\alpha} \rangle K^{(\sigma)\alpha\beta} \langle \phi_{\beta} \mid \varphi_{m'}^{(I)} \rangle$

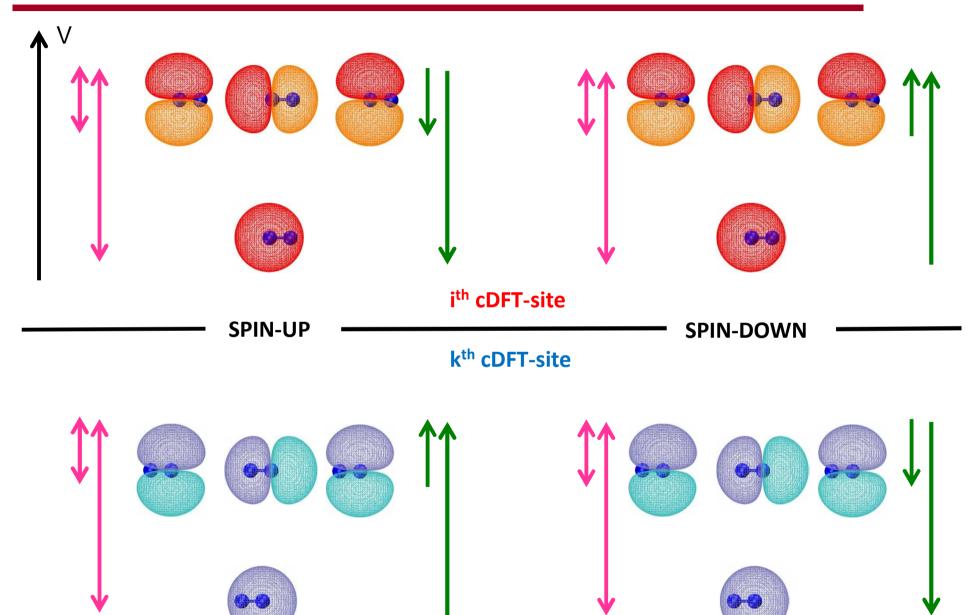
 $O_{mm'}^{(I)} = \langle \varphi_m^{(I)} \mid \varphi_{m'}^{(I)} \rangle, \qquad \mid \varphi^{(I)m} \rangle = \mid \varphi_{m'}^{(I)} \rangle O^{(I)m'm}, \qquad O_{mm''}^{(I)} O^{(I)m''m'} = \delta_m^{m'}$

• What to use as cDFT-projectors?

LCAO basis function, valence pseudo-orbitals, hydrogenic wavefunctions, Maximally Localised Wannier Function (MLWF), in situ optimised DFT-NGWFs, in situ optimised cDFT-NWGFs, self-consistent cDFT-NGWFs?

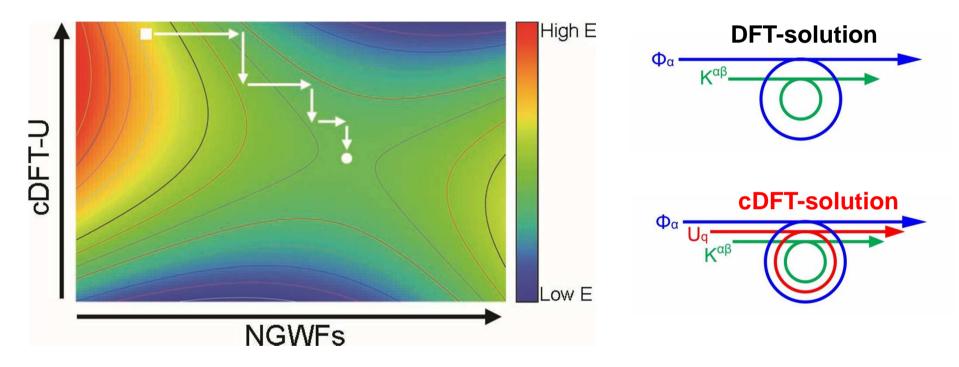


Choosing between the implemented (8x2x2=32) flavours of cDFT



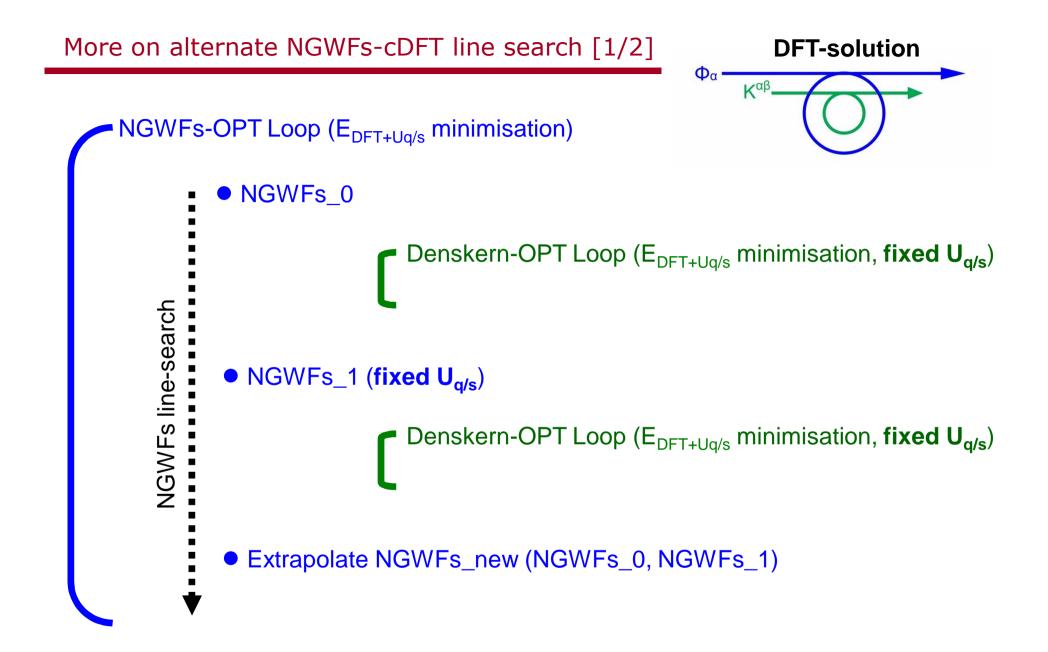
How to optimise the cDFT-potentials with just one NGWFs-optimisation...

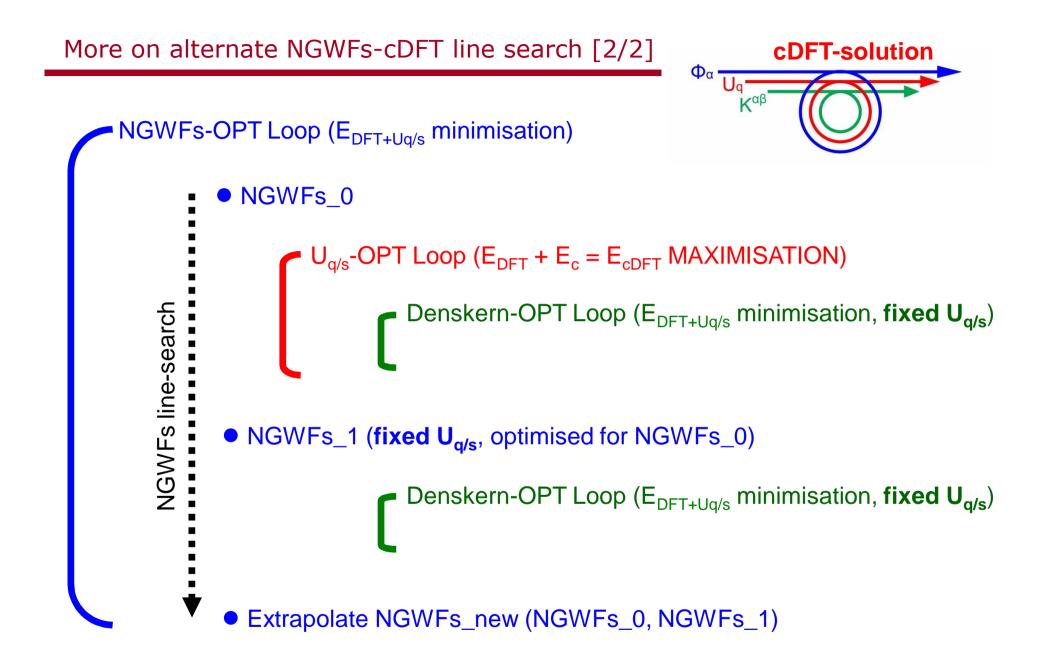
- Kohn-Sham DFT: minimum of E_{DFT} with respect to NGWFs for idempotent $K^{\alpha\beta}$
- cDFT: maximum of E_{cDFT} with respect to constraining potentials ($U_{q/s}$)



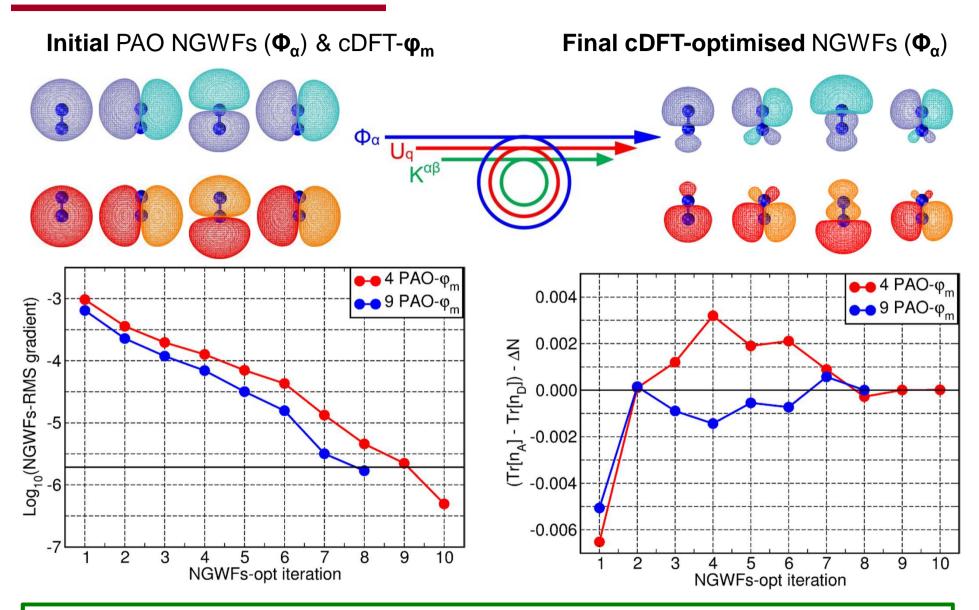
• Can the problem be solved by alternating NWGFs and $U_{q/s}$ optimisation steps? (having 'only' $\partial E_{cDFT} / \partial \Phi_{\alpha}$, $\partial E_{cDFT} / \partial K^{\alpha\beta}$, and $\partial E_{cDFT} / \partial U_{q/s}$ available)

$$\frac{\partial E_{cDFT}}{\partial U_s^{(I)}} = Tr\left[n^{(I)(\uparrow)}\right] - Tr\left[n^{(I)(\downarrow)}\right] - \Delta N_{(I)} \qquad \frac{\partial E_{cDFT}}{\partial U_q^{(I)(\sigma)}} = Tr\left[n^{(I)(\sigma)}\right] - N_{(I)(\sigma)}$$

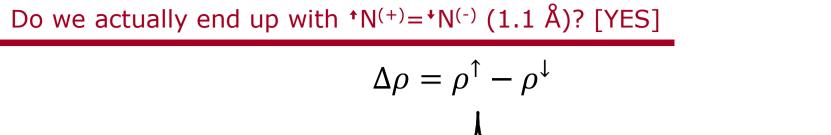


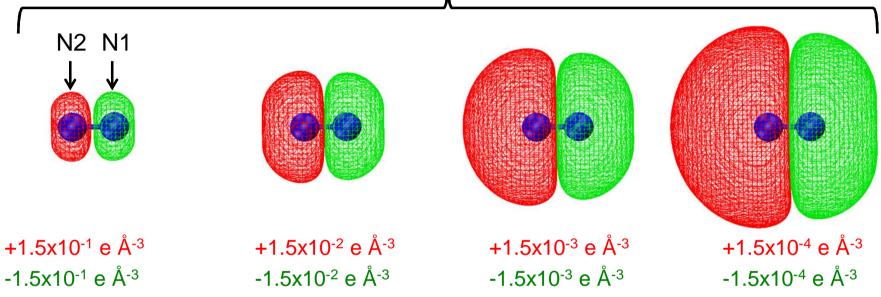


In action on $N^{(+)}=N^{(-)}$ (1.1 Å)

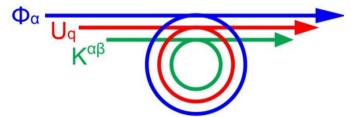


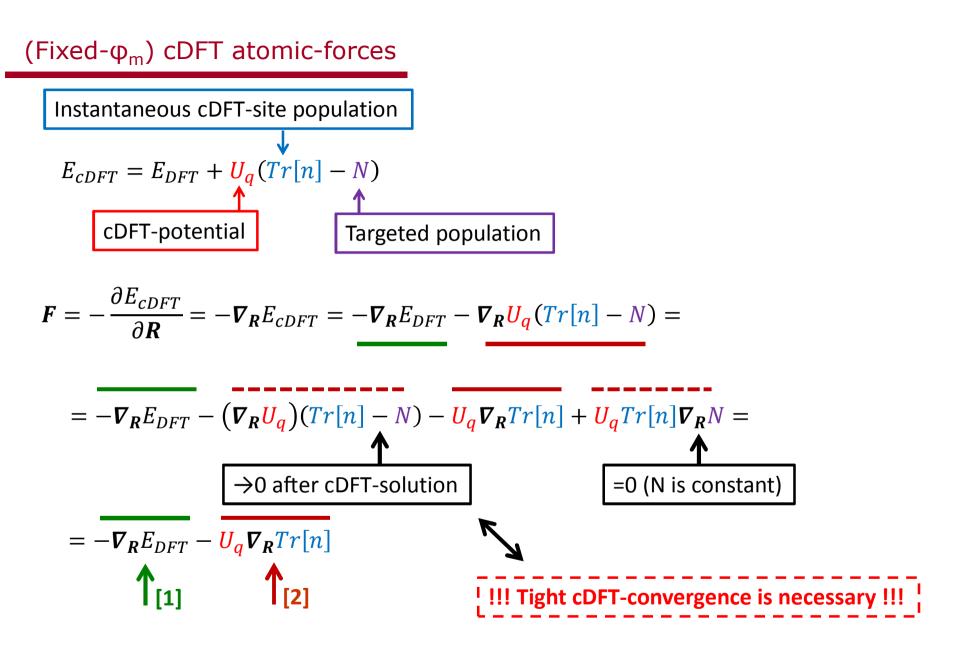
Fast convergence within the requested 2x10⁻⁶ (NGWFs-RMS) and 10⁻⁵ (cDFT-RMS) thresholds





- Noticeably sharp separation of ρ^{\uparrow} and ρ^{\downarrow} in spite of 5Å-radius NGWFs and PAO- ϕ_{m}
- How is it possible? Because $K^{\alpha\beta}$, the NGWFs $\{\varphi_{\alpha}\}$, and U_{q} have **been optimised for the** given cDFT-problem.

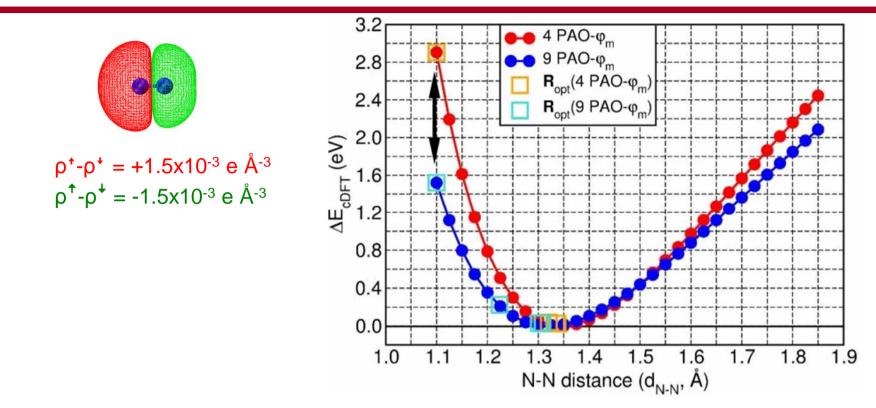




[1] a) N. D. M. Hine et al., Phys. Rev. B 83, 195102 (2011);

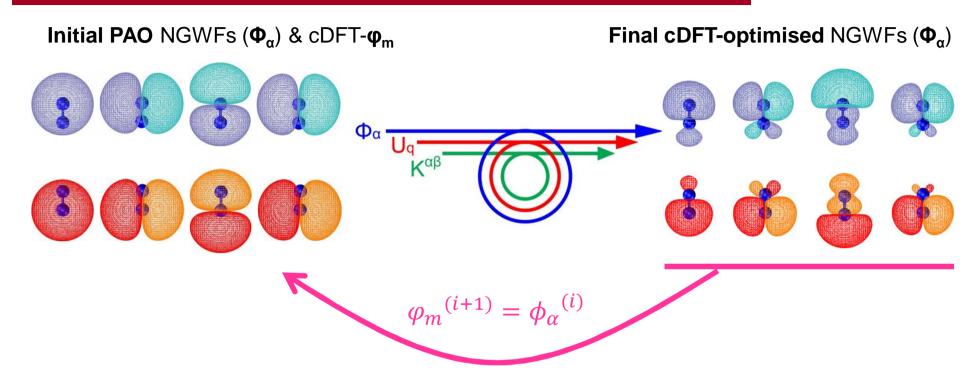
- b) A. Ruiz-Serrano et al., J. Chem. Phys. **136**, 234101 (2012).
- [2] D. D. O'Regan et al., Phys. Rev. B 85, 085107 (2012) and references therein.

(Fixed- ϕ_m) cDFT atomic-forces and geometry optimisation for N⁽⁺⁾=N⁽⁻⁾



- Fast-convergence of BFGS optimisation algorithm: F_{max} <0.01 eV/Å in 4 BFGS iterations
- Spin-decoupling of two π -electrons in ${}^{*}N^{(+)} = {}^{*}N^{(-)} \rightarrow$ elongation of optimum bond-distance
- 4 PAO- ϕ_m : 1.10 Å \rightarrow 1.35 Å
- 9 PAO- ϕ_m : 1.10 Å \rightarrow 1.33 Å
- Different set of cDFT-projectors (ϕ_m) \rightarrow different constraints \rightarrow different cDFT-solutions
- How to reduce cDFT-ambiguities?

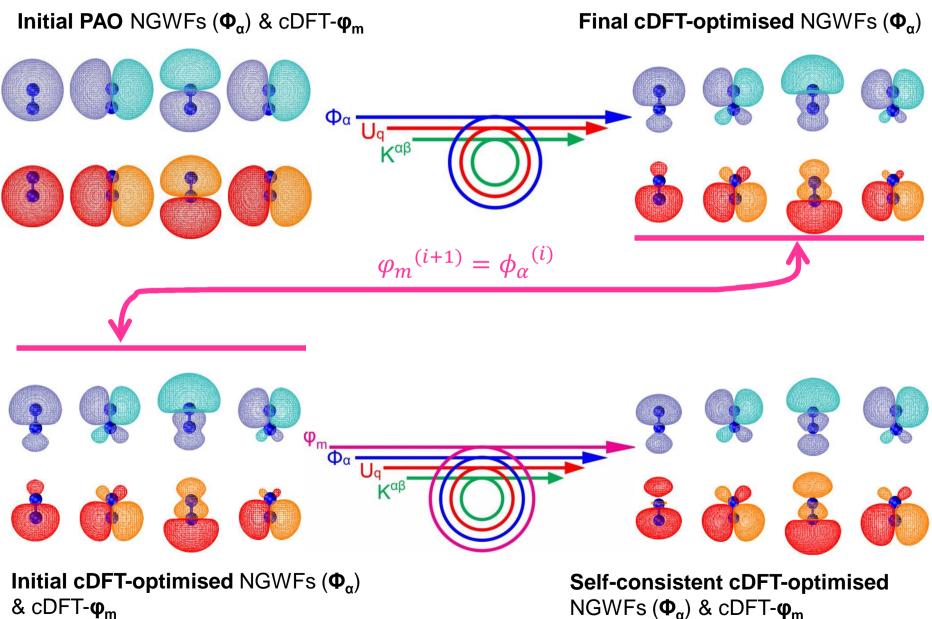
Optimised cDFT-NGWFs (Φ_a) as new cDFT-projectors (ϕ_m)



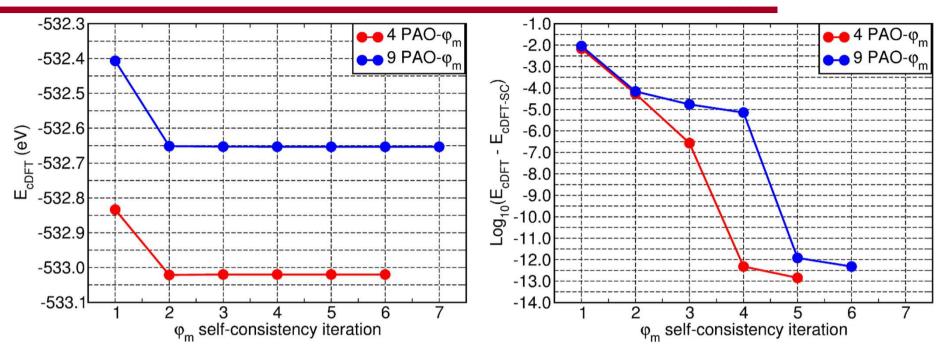
•Use cDFT-optimised NGWFs (ϕ_{α}) at iteration (i) as new cDFT-projectors (ϕ_{m}) for iteration (i+1), and re-solve the cDFT problem by optimising the cDFT-NGWFs (ϕ_{α}) for iteration (i+1).

• Iterate until E_{cDFT} (i.e. ϕ_{α} , $K^{\alpha\beta}$, and ϕ_m) do not change within given threshold.

Optimised cDFT-NGWFs (Φ_a) as new cDFT-projectors (ϕ_m)

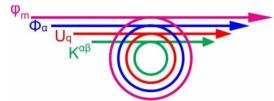


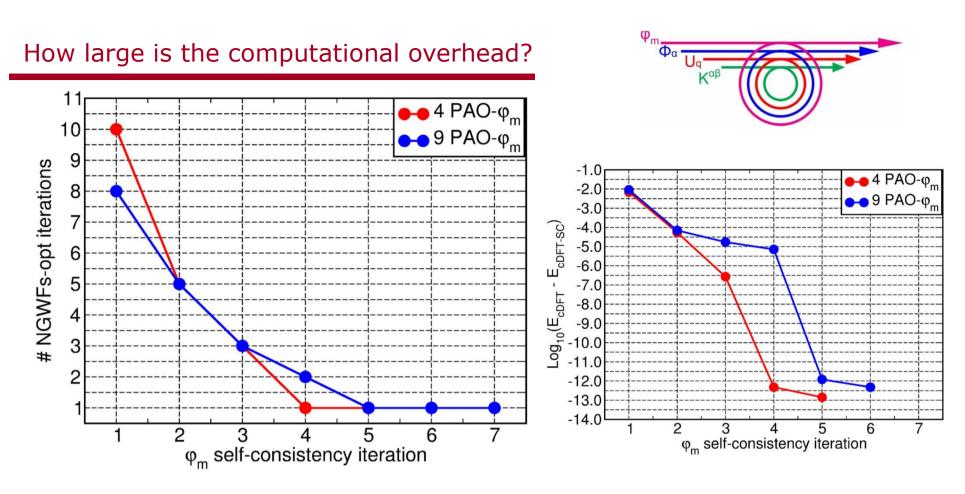
& cDFT-φ_m



How fast/tight is the convergence of the cDFT-projectors (ϕ_m)?

- Fast convergence (≤7 iterations), even for a tightly-constrained problem [N-N: 1.35 Å (1.33 Å)]
- Tight convergence (≤10⁻¹² eV), even for reasonable kinetic-energy cutoffs (1000 eV)
- As the cDFT-projectors (ϕ_m) reach self-consistency, energy of cDFT-solution is lowered
- Best cDFT-projectors as those yielding the lowest-energy cDFT solution [for the same targeted constraint]





• 4 PAO- ϕ_m . 1st cDFT-solution: **10** NWGFS-opt iterations; sc- ϕ_m procedure: **12**

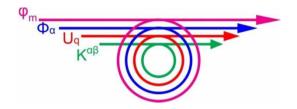
• 9 PAO- ϕ_m . 1st cDFT-solution: 8 NGWFs-opt iterations; sc- ϕ_m procedure: 13

• ~x2 increase of computation cost, for a convergence tighter than 10⁻¹² eV

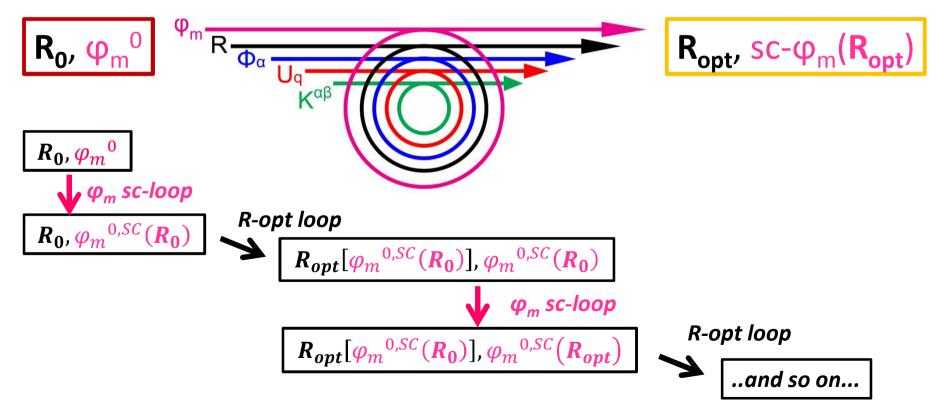
• ~x0.5 increase of computation cost, for a convergence tighter than 10⁻⁴ eV

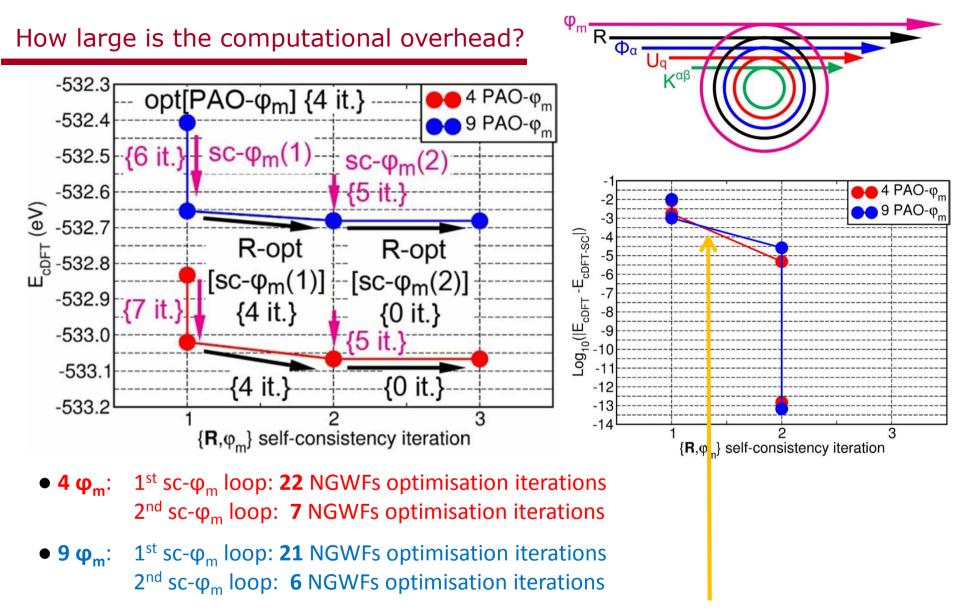
Self-consistency of system-geometry (**R**) and cDFT-projectors (ϕ_m)

• sc-cDFT-projectors (sc- ϕ_m) depend on system-geometry **R**



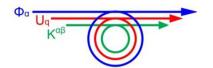
 'Solution': perform optimisation of both φ_m and R, alternating self-consistency cDFT-projector (φ_m) optimisation (at fixed-R) and geometry (R) optimisation (with fixed-sc-φ_m) loops.

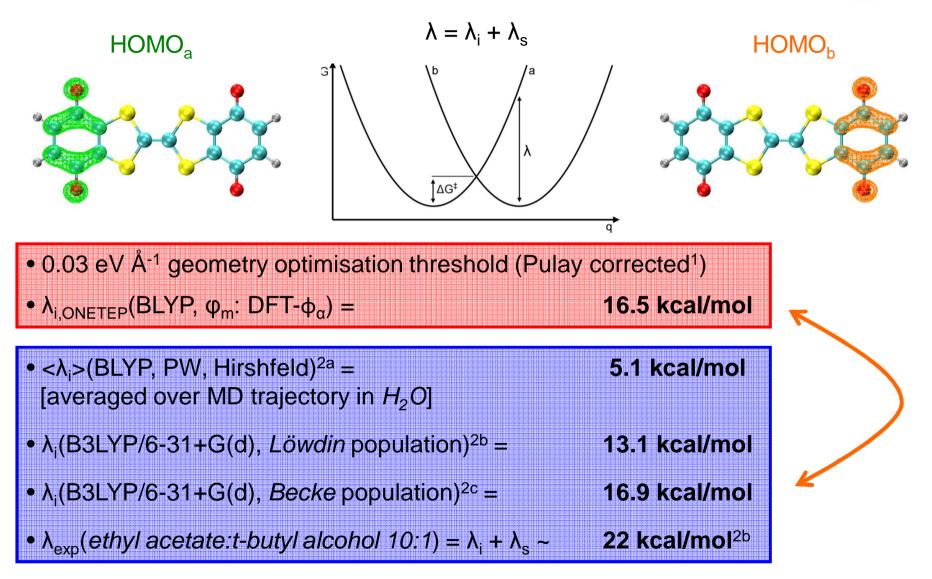




 Largest computational overhead from extra R_{opt} loop (4 BFGS-iterations) [if interested in improving convergence of E_{cDFT} from 10⁻³ to 10⁻⁵ eV]

Intra-molecular e-transfer in Q-TTF-Q⁽⁻⁾





[1] A. Ruiz-Serrano *et al.*, *J. Chem. Phys.* 136, 234101 (2012);
[2] a) H. Oberhofer *et al.*, *J. Chem. Phys.* 133, 244105 (2010);
b) Q. Wu *et al.*, *J. Phys. Chem. A* 110, 9212 (2006);
c) Q. Wu *et al.*, *J. Phys. Chem.* 125, 164105 (2006)

