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Motivation: need of atomic-level insight in energy materials & interfaces

• Electrochemical energy storage (B, SCAP)
• Electrochemical energy conversion (FC)
• (Bio-)fuel production
• e-(h) migration across PV interfaces
• Catalysis & photo-catalysis
• (Solar) light-harvesting

Charge (energy) transfer in extended, 
heterogeneous, often buried interfaces

Need to access to the physico-chemical factors 
governing the thermodynamics and kinetics of 
charge (energy) transfer in such interfaces

Viable approximations to the physico-chemical 
factors governing the thermodynamics and 
kinetics of charge (energy) transfer in such 
interfaces



Electron coupling and e-, h-, energy-transfer (in condensed phases)

Acc. Chem. Res. 42, 509 (2009)

S↔T inter-system crossing

R. A. Marcus, J. Chem. Phys. 24, 966 (1956)

• Selectively localise e/h/e-h pair on ‘a’ and ‘b’

• Optimise (the geometry of the) system on the ‘a’ and ‘b’ diabatic)
electronic potential energy surfaces → evaluate ∆Go, λ

• Approximate many-body electronic wave-functions Ψa, Ψb

• Approximate non-adiabatic coupling Hab=<Ψa|Hel|Ψb>
(Hel is not diagonal in the {a,b} diabatic representation)



Constrained-DFT [and (approximated) diabatic states:                               ]τττψψτ ×=×∇=∇= ;0jRiij

1. Add constrain on the (e) density
[electron/spin-density localisation…]

2. Build a constrained functional W
[via the Lagrange multipliers Vk]

3. Reformulate W 
in terms of the density matrix (P)

4. Maximize W (concave) WRT P & Vk

1 hole 1 electron

5. atomic forces
[various definition of wc: Löwdin, Becke, 
Bader, etc population analysis)]

B. Kaduk et al. Chem. Rev 112, 321 (2012)



Linear-scaling Density Functional Theory in ONETEP

• State-of-the art linear-scaling DFT code, capable of treating tens
of thousands of atoms.

• Reformulates Kohn-Sham DFT in terms

of the single-particle density matrix.

• Uses localized functions (NGWFs or

Non-orthogonal Generalized Wannier

Functions).

• Linear scaling is achieved by exploiting
– the sparsity of the density kernel, and

– the exponential decay of the density matrix.

... by the introduction of spatial cutoffs for the kernel and the NGWFs.

• Achieves near-complete basis set accuracy.

• Fully parallel, portable. psinc functions,
equivalent to plane waves

C.-K. Skylaris, P. D. Haynes, A. A. Mostofi and M. C. Payne, J. Chem. Phys. 122, 084119 (2005) 



Linear-scaling Density Functional Theory in ONETEP

LiH

H2O dimer

a) Comp. Phys. Comm. 180, 1041 (2009),b) Phys. Rev. B 66, 035119 (2002)

Near-complete
basis set accuracy

Single-point energy calculation 
for an amyloid fibril protein, 
run on 256 cores of Iridis3
(University of Southampton)
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Projector constrained-DFT in ONETEP

[1] a) D. D. O'Regan et al., Phys. Rev. B 82, 081102 (2010); b) D. D. O'Regan et al., ibid. 83, 245124 (2011); 
c) D. D. O'Regan et al., ibid. 85, 085108 (2012).

1. For each spin-channel σ, and cDFT-site I, augment the DFT energy by the difference
from the targeted electronic population [(∆)N(I)(σ)] times the constraining potential (Uq/s)

where the tensorially invariant1 subspace occupancy of the Ith cDFT-site reads:

with

2. Augment (σ-dependent) DFT Hamiltonian with (σ-dependent) cDFT contributions, calculated
as derivative of the cDFT correction with respect to an arbitrary density Kernel:



So, what are we doing in practice?

Uq(↑) < 0

e(↑)

Uq(↑) > 0

e(↑)

Us< 0
e(↑)

e(↓)

Us> 0
e(↑)

e(↓)

Uq,s

Uq,s

e(↑), e(↓)

…(just) adding attractive/repulsive potentials to constrain subspace populations,
population differences, and/or magnetic moments (differences)



Choosing the projectors for the cDFT-subspaces

• What to use as cDFT-projectors?
LCAO basis function, valence pseudo-orbitals, hydrogenic wavefunctions,
Maximally Localised Wannier Function (MLWF), in situ optimised DFT-NGWFs,
in situ optimised cDFT-NWGFs, self-consistent cDFT-NGWFs?

• The cDFT functional is constructed using the occupancy matrix (n) of the localised
cDFT-projectors φm

PAO-φm ϕm = DFT- ϕα ϕm = cDFT-ϕα sc-ϕm



Choosing between the implemented (8x2x2=32) flavours of cDFT

V

SPIN-UP SPIN-DOWN
ith cDFT-site

kth cDFT-site



How to optimise the cDFT-potentials with just one NGWFs-optimisation… 

• Kohn-Sham DFT: minimum of EDFT with respect to NGWFs for idempotent Kαβ

• cDFT: maximum of EcDFT with respect to constraining potentials (Uq/s)

• Can the problem be solved by alternating NWGFs and Uq/s optimisation steps?
(having ‘only’ ∂EcDFT/∂Φα, ∂EcDFT/∂Kαβ, and ∂EcDFT/∂Uq/s available)

DFT-solution

cDFT-solution



More on alternate NGWFs-cDFT line search [1/2] DFT-solution

NGWFs-OPT Loop (EDFT+Uq/s minimisation)

● NGWFs_0

Denskern-OPT Loop (EDFT+Uq/s minimisation, fixed Uq/s)

● NGWFs_1 (fixed Uq/s)

Denskern-OPT Loop (EDFT+Uq/s minimisation, fixed Uq/s)

● Extrapolate NGWFs_new (NGWFs_0, NGWFs_1)
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More on alternate NGWFs-cDFT line search [2/2]

NGWFs-OPT Loop (EDFT+Uq/s minimisation)

● NGWFs_0

Uq/s-OPT Loop (EDFT + Ec = EcDFT MAXIMISATION)

Denskern-OPT Loop (EDFT+Uq/s minimisation, fixed Uq/s)

● NGWFs_1 (fixed Uq/s, optimised for NGWFs_0)

Denskern-OPT Loop (EDFT+Uq/s minimisation, fixed Uq/s)

● Extrapolate NGWFs_new (NGWFs_0, NGWFs_1)
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cDFT-solution



In action on N(+)=N(-) (1.1 Å)

Initial PAO NGWFs (Φα) & cDFT-φm Final cDFT-optimised NGWFs (Φα)

Fast convergence within the requested 2x10-6 (NGWFs-RMS) and 10-5 (cDFT-RMS) thresholds



+1.5x10-1 e Å-3

-1.5x10-1 e Å-3

+1.5x10-2 e Å-3

-1.5x10-2 e Å-3

+1.5x10-3 e Å-3

-1.5x10-3 e Å-3

+1.5x10-4 e Å-3

-1.5x10-4 e Å-3

N2 N1

Do we actually end up with ꜛN(+)=ꜜN(-) (1.1 Å)? [YES]

Δ� � �↑ � �↓

● Noticeably sharp separation of  �↑ and �↓ in spite of 5Å-radius NGWFs and PAO-ϕm

● How is it possible? Because Kαβ, the NGWFs {φα}, and Uq have been optimised for the
given cDFT-problem.



(Fixed-φm) cDFT atomic-forces

����� � ���� + �� �� � � �

Targeted populationcDFT-potential

Instantaneous cDFT-site population

[1] a) N. D. M. Hine et al., Phys. Rev. B 83, 195102 (2011); 
b) A. Ruiz-Serrano et al., J. Chem. Phys. 136,  234101 (2012).

[2] D. D. O'Regan et al., Phys. Rev. B 85, 085107 (2012) and references therein.
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=0 (N is constant)→0 aHer cDFT-solution
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[1] [2] !!! Tight cDFT-convergence is necessary !!!



(Fixed-φm) cDFT atomic-forces and geometry optimisation for N(+)=N(-)

ρꜛ-ρꜜ = +1.5x10-3 e Å-3

ρꜛ-ρꜜ = -1.5x10-3 e Å-3

● Fast-convergence of BFGS optimisation algorithm: Fmax <0.01 eV/Å in 4 BFGS iterations

● Spin-decoupling of two  -electrons in ꜛN(+)=ꜜN(-) → elongation of optimum bond-distance

● 4 PAO-ϕm: 1.10 Å → 1.35 Å

● 9 PAO-ϕm: 1.10 Å → 1.33 Å

● Different set of cDFT-projectors (ϕm) → different constraints → different cDFT-solutions

● How to reduce cDFT-ambiguities?



Optimised cDFT-NGWFs (Φα) as new cDFT-projectors (φm)

!"#$%&' � ��#$'

●Use cDFT-optimised NGWFs (φα) at iteration (i) as new cDFT-projectors (ϕm) for iteration (i+1),
and re-solve the cDFT problem by optimising the cDFT-NGWFs (φα) for iteration (i+1).

●Iterate until EcDFT (i.e. φα, Kαβ, and ϕm) do not change within given threshold.

Initial PAO NGWFs (Φα) & cDFT-φm Final cDFT-optimised NGWFs (Φα)



Optimised cDFT-NGWFs (Φα) as new cDFT-projectors (φm)

Initial PAO NGWFs (Φα) & cDFT-φm Final cDFT-optimised NGWFs (Φα)

!"#$%&' � ��#$'

Initial cDFT-optimised NGWFs (Φα) 
& cDFT-φm

Self-consistent cDFT-optimised
NGWFs (Φα) & cDFT-φm



How fast/tight is the convergence of the cDFT-projectors (φm)?

● Fast convergence (≤7 iterations), even for a tightly-constrained problem [N-N: 1.35 Å (1.33 Å)] 

● Tight convergence (≤10-12 eV), even for reasonable kinetic-energy cutoffs (1000 eV)

● As the cDFT-projectors (ϕm) reach self-consistency, energy of cDFT-solution is lowered

● Best cDFT-projectors as those yielding the lowest-energy cDFT solution 
[for the same targeted constraint]



How large is the computational overhead?

● 4 PAO-ϕm. 1st cDFT-solution: 10 NWGFS-opt iterations; sc-ϕm procedure: 12

● 9 PAO-ϕm. 1st cDFT-solution:   8 NGWFs-opt iterations; sc-ϕm procedure: 13

● ~x2 increase of computation cost, for a convergence tighter than 10-12 eV

● ~x0.5 increase of computation cost, for a convergence tighter than 10-4 eV



R0, ϕm
0 Ropt, sc-ϕm(Ropt)

�(, !")
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..and so on...

ϕm sc-loop

ϕm sc-loop

R-opt loop

R-opt loop

Self-consistency of system-geometry (R) and cDFT-projectors (φm)

● sc-cDFT-projectors (sc-ϕm) depend on system-geometry R

●
/0123
/� ?!? no idea(!)

● ‘Solution’: perform optimisation of both ϕm and R, 
alternating self-consistency cDFT-projector (ϕm) optimisation (at fixed-R)  and 
geometry (R) optimisation (with fixed-sc-ϕm) loops.



How large is the computational overhead?

● 4 ϕm: 1st sc-ϕm loop: 22 NGWFs optimisation iterations
2nd sc-ϕm loop: 7 NGWFs optimisation iterations

● 9 ϕm: 1st sc-ϕm loop: 21 NGWFs optimisation iterations
2nd sc-ϕm loop:  6 NGWFs optimisation iterations

● Largest computational overhead from extra Ropt loop (4 BFGS-iterations) 
[if interested in improving convergence of EcDFT from 10-3 to 10-5 eV]



Intra-molecular e-transfer in Q-TTF-Q(-)

HOMOa HOMOb

• 0.03 eV Å-1 geometry optimisation threshold (Pulay corrected1)

• λi,ONETEP(BLYP, φm: DFT-φα) =  16.5 kcal/mol

• <λi>(BLYP, PW, Hirshfeld)2a = 5.1 kcal/mol
[averaged over MD trajectory in H2O]

• λi(B3LYP/6-31+G(d), Löwdin population)2b = 13.1 kcal/mol

• λi(B3LYP/6-31+G(d), Becke population)2c = 16.9 kcal/mol

• λexp(ethyl acetate:t-butyl alcohol 10:1) = λi + λs ~ 22 kcal/mol2b

[1] A. Ruiz-Serrano et al., J. Chem. Phys. 136, 234101 (2012);  [2] a) H. Oberhofer et al., J. Chem. Phys. 133, 244105 (2010); 
b) Q. Wu et al., J. Phys. Chem. A 110, 9212 (2006);  c) Q. Wu et al., J. Phys. Chem. 125, 164105 (2006)

λ = λi + λs



e-transfer in metal-organic systems: Ferrocenium-Ferrocene complexes

↑Fc(+)─Fc;  Fc: Fe(C5H5)2

∆ρ = ρ↑ - ρ↓ = 10-2 e Å-3

• 0.05 eV Å-1 geometry optimisation threshold (Pulay corrected1)

• ∆G‡
ONETEP(PBE, φm: DFT-ϕα) = 5.1 kcal/mol

• ∆G‡(B3LYP/6-31G**/LANL2DZ, Becke population)2 = 7.5 kcal/mol

[1] A. Ruiz-Serrano et al., J. Chem. Phys. 136, 234101 (2012);  [2] F. Ding et al., J. Phys. Chem. A 114, 6039 (2010)

↑Fc(+)─Fc Fc─↑Fc(+)

• ∆G‡
ONETEP(PBE, φm: DFT-ϕα) =  1.7 kcal/mol

• ∆G‡(B3LYP/6-31G**/LANL2DZ, Becke population)2 = 1.4 kcal/mol

↑Fc(+)-CH2-CH2-Fc;  Fc: Fe(C5H5)2



To summarise

ρꜛ-ρꜜ >0
ρꜛ-ρꜜ <0


