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Optical properties of large systems

Bacteriochlorophyll in FMO Semiconductor nanoparticle

» Effects due to protein » Surface effects and
environment quantum confinement

» Optical properties different » Optical properties different
from isolated molecule from bulk crystal

figure taken from http://www.ks.uiuc.edu/Research/fmo/



Linear Response TDDFT

Solve

where
Acv,c’v’ (UJ) = 500’5vv’(61é/s - 515/8) + Kcv,c’v’ (W)
Bcv,c’v’(w) = Kcv7v’c/(w)
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Tamm-Dancoff approximation: Y = 0; B = 0; AX = wX
Use iterative eigensolvers: Only the action q = Ax is required.



DFT vs. Linear-scaling DFT

DFT LS-DFT

» KS-orbitals are delocalised » Use atom-centered
over the entire system nonorthogonal orbitals that
» Keeping O(N) orbitals are very localised
orthogonal to each other — » Move from a KS state
O(N?) scaling formalism to a density

matrix formalism



Linear-scaling DFT in ONETEP

In linear-scaling DFT, the valence density matrix is expanded in
terms of atom-centered localised functions {¢, }

occ

p(r,r) = Zw‘“ (NS (¢ Z¢ (NPWYIBgn(r)

» {¢.} are optimised in situ during a ground state calculation
— minimal number is needed to span valence space

Eprr = Eprr [P, {¢a}]

» Linear scaling is achieved by truncating the density matrix
with distance — P{} is sparse

» No reference to individual Kohn-Sham eigenstates and
energies



Conduction optimisation of phthalocyanine
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» Optimisation of a second set of localised functions {x.}
and effective density matrix P{¢} to represent low energy
part of conduction space '

'L. E. Ratcliff, N. D. M. Hine, and P. D. Haynes, Phys. Rev. B 84,
165131(2011)




Optimisation of the Rayleigh-Ritz value in Kohn-Sham
space

. xTAx
w = min
x  X'x
Differentiating the Rayleigh-Ritz value yields an energy
gradient:
Ow
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Write q = Ax in terms of an effective transition density pt'}(r)
and the Kohn-Sham eigenvalue differences

Qcv = (Elés - EI‘ES)XCV T (Vs{él}; [p{1}])cv

where pt'}(r) = 3, &S (1) xe X5 (r)



Transition density matrix in ONETEP

PN =D vES (xS (r)

=Y Xa(r) P g4(r)
af

» Express the transition
density in terms of density
matrix P{}

» Hole well described by
{¢a}

» Electron well described by
{Xa}

» pl1}(r) well described by
{¢a} and {xs}
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The Tamm-Dancoff TDDFT gradient in {¢} and {x}
representation

The TDDFT gradient q = Ax in mixed {¢} and {x}
representation:

q*¢ = PO HX P — PUTHE PV} 4 p{c}vég}‘f’p{v}

» Fully O(N) if all involved density matrices are truncated

» Can be used to generate a gradient for conjugate gradient
algorithm

» Multiple excitations: Optimise {P,{”} silmutaneously —
O(N?) due to orthonormalisations



Full TDDFT: An effective variational principle

In full TDDFT, define an effective variational principle for the
positive eigenvalues:

Wmin = __MiNn { o [P{p}TSXq?{(/g)}Sﬂ
(perp@) | 2 ‘Tr [P{p}TSXP{q}Sﬂ ‘
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Full TDDFT vs. Tamm-Dancoff: Bacteriochlorophyll
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(10,0) Carbon nanotube: Linear scaling test
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» Time taken for a single conjugate gradient iteration vs.
system size



Constraining the TDDFT transition density matrix

Fully dense P{'} P{'} only on one Benzene

» P filling: 100.0 % » P{" filling: 25.0 %

> w=5.1950eV > w=>51953 eV

> f=0.177x107° > f=0.111x107°

> 10th excitation converged > Lowest excitation converged



Interactions between subsystems: Exciton coupling

Reintroduce subsystem coupling perturbatively:
1 1 1
Pl = SiaiPy) + 5, 5Py
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«aj, Bj obtained in a single subspace
diagonalisation as a post-processing step




Solvatochromic shift of alizarin (C14HgQOy4) in water

How much of the environment has to be treated explicitly in
order to converge localised excitations of alizarin?

» Create a model system from a single classical MD
snapshot

» All water within 12 A of alizarin is included in the
calculation ~ 1800 atoms



Solvatochromic shift of alizarin (C14HgQOy4) in water
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» Strong solvatochromic shift of 0.12 eV due to
charge-transfer delocalisation in P{"} onto the water

» Delocalisation confined to within 6 A from alizarin ( ~ 300
atoms)



The Fenna-Matthews-Olson (FMO) complex

» 7 Bacteriochlorophyll pigments per monomer

» Including protein environment ~ 10.000 atoms per
monomer

» Exciton dynamics studied with model Hamiltonians —
accurate pigment site energies needed

figure taken from http://www.ks.uiuc.edu/Research/fmo/



Site energies from linear-scaling TDDFT: Case study
of BChl site 1

Two model systems of the protein environment:

562 atoms

10 A radius 1646 atoms

15 A radius



Absorption spectrum, full TDDFT
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Fully dense pit): large number of spurious cr]arge—transfer
states with local fy (34 states needed for 15 A spectrum)



Quantifying exciton delocalisation into the protein
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» 12 A radius of explicit protein environment necessary to
converge localised site energies ~ 1000 atom systems

» Constraining P{"}: Localised site energies become the
lowest excited states of the system



Conclusion

» ONETEP provides an efficient framework for calculating
low energy excited states in systems containing thousands
of atoms (available features: (semi)-local functionals,
PAW:; Future work: Hybrid functionals, TDDFT forces —
excited states dynamics)

» Fully linear-scaling for sufficiently large systems

» Truncation of P!} can be used to converge targeted,
localised excitations of larger systems

» Warning: QM/MM methods can require very large QM
regions to converge environmental effects on localised
excitations.
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