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Optical properties of large systems

Bacteriochlorophyll in FMO

I Effects due to protein
environment

I Optical properties different
from isolated molecule

figure taken from http://www.ks.uiuc.edu/Research/fmo/

Semiconductor nanoparticle

I Surface effects and
quantum confinement

I Optical properties different
from bulk crystal



Linear Response TDDFT
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Tamm-Dancoff approximation: Y = 0; B = 0; AX = ωX
Use iterative eigensolvers: Only the action q = Ax is required.



DFT vs. Linear-scaling DFT

DFT

I KS-orbitals are delocalised
over the entire system

I Keeping O(N) orbitals
orthogonal to each other→
O(N3) scaling

LS-DFT

I Use atom-centered
nonorthogonal orbitals that
are very localised

I Move from a KS state
formalism to a density
matrix formalism



Linear-scaling DFT in ONETEP

In linear-scaling DFT, the valence density matrix is expanded in
terms of atom-centered localised functions {φα}

ρ(r, r′) =
occ∑
v

ψKS
v (r)ψKS∗

v (r′) =
∑
αβ

φα(r)P{v}αβφ∗β(r
′)

I {φα} are optimised in situ during a ground state calculation
→ minimal number is needed to span valence space

EDFT = EDFT

[
P{v}, {φα}

]
I Linear scaling is achieved by truncating the density matrix

with distance→ P{v} is sparse
I No reference to individual Kohn-Sham eigenstates and

energies



Conduction optimisation of phthalocyanine
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I Optimisation of a second set of localised functions {χα}
and effective density matrix P{c} to represent low energy
part of conduction space 1

1L. E. Ratcliff, N. D. M. Hine, and P. D. Haynes, Phys. Rev. B 84,
165131(2011)



Optimisation of the Rayleigh-Ritz value in Kohn-Sham
space

ω = min
x

x†Ax
x†x

Differentiating the Rayleigh-Ritz value yields an energy
gradient:

∂ω

∂x
= 2Ax−

[
x†Ax

]
x

Write q = Ax in terms of an effective transition density ρ{1}(r)
and the Kohn-Sham eigenvalue differences

qcv = (εKS
c − εKS

v )xcv +
(

V {1}SCF

[
ρ{1}

])
cv

where ρ{1}(r) =
∑

cv ψ
KS
c (r)xcvψ

KS
v (r)



Transition density matrix in ONETEP

ρ{1}(r) =
∑
cv

ψKS
c (r)xcvψ

KS
v (r)

=
∑
αβ

χα(r)P{1}αβφβ(r)

I Express the transition
density in terms of density
matrix P{1}

I Hole well described by
{φα}

I Electron well described by
{χα}

I ρ{1}(r) well described by
{φα} and {χβ}



The Tamm-Dancoff TDDFT gradient in {φ} and {χ}
representation

The TDDFT gradient q = Ax in mixed {φ} and {χ}
representation:

qχφ = P{c}Hχ
KSP{1} − P{1}Hφ

KSP{v} + P{c}V{1}χφSCF P{v}

I Fully O(N) if all involved density matrices are truncated
I Can be used to generate a gradient for conjugate gradient

algorithm

I Multiple excitations: Optimise {P{1}i } silmutaneously→
O(N2

ω) due to orthonormalisations



Full TDDFT: An effective variational principle

In full TDDFT, define an effective variational principle for the
positive eigenvalues:

ωmin = min
{P{p},P{q}}
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where

qχφ{p} = P{c}Hχ
KSP{1} − P{1}Hφ

KSP{v}

qχφ{q} = P{c}Hχ
KSP{1} − P{1}Hφ

KSP{v} + 2P{c}V{1}χφSCF P{v}



Full TDDFT vs. Tamm-Dancoff: Bacteriochlorophyll

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1.2  1.4  1.6  1.8  2  2.2  2.4  2.6  2.8

A
b

s
o

rp
ti
o

n
 s

tr
e

n
g

th
 (

a
rb

. 
u

n
it
s
)

Energy (eV)

Full TDDFT
TDA

Experiment



(10,0) Carbon nanotube: Linear scaling test
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I Time taken for a single conjugate gradient iteration vs.
system size



Constraining the TDDFT transition density matrix

Fully dense P{1}

I P{1} filling: 100.0 %
I ω = 5.1950 eV
I f = 0.177 × 10−6

I 10th excitation converged

P{1} only on one Benzene

I P{1} filling: 25.0 %
I ω = 5.1953 eV
I f = 0.111 × 10−6

I Lowest excitation converged



Interactions between subsystems: Exciton coupling

Reintroduce subsystem coupling perturbatively:
P{1}tot =

∑
i αiP

{1}
Ai

+
∑

j βjP
{1}
Bj
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Solvatochromic shift of alizarin (C14H8O4) in water

How much of the environment has to be treated explicitly in
order to converge localised excitations of alizarin?

I Create a model system from a single classical MD
snapshot

I All water within 12 Å of alizarin is included in the
calculation ≈ 1800 atoms



Solvatochromic shift of alizarin (C14H8O4) in water

2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

0 Å 4 Å 6 Å ∞

E
ne

rg
y

(e
V

)

P{1} truncation constraint

explicit water
vacuum

implicit solvent

I Strong solvatochromic shift of 0.12 eV due to
charge-transfer delocalisation in P{1} onto the water

I Delocalisation confined to within 6 Å from alizarin ( ≈ 300
atoms)



The Fenna-Matthews-Olson (FMO) complex

I 7 Bacteriochlorophyll pigments per monomer
I Including protein environment ≈ 10.000 atoms per

monomer
I Exciton dynamics studied with model Hamiltonians→

accurate pigment site energies needed

figure taken from http://www.ks.uiuc.edu/Research/fmo/



Site energies from linear-scaling TDDFT: Case study
of BChl site 1

Two model systems of the protein environment:

562 atoms
10 Å radius

1646 atoms
15 Å radius



Absorption spectrum, full TDDFT
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Fully dense P{1}: large number of spurious charge-transfer
states with local fxc (34 states needed for 15 Å spectrum)



Quantifying exciton delocalisation into the protein
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I 12 Å radius of explicit protein environment necessary to
converge localised site energies ≈ 1000 atom systems

I Constraining P{1}: Localised site energies become the
lowest excited states of the system



Conclusion

I ONETEP provides an efficient framework for calculating
low energy excited states in systems containing thousands
of atoms (available features: (semi)-local functionals,
PAW; Future work: Hybrid functionals, TDDFT forces→
excited states dynamics)

I Fully linear-scaling for sufficiently large systems
I Truncation of P{1} can be used to converge targeted,

localised excitations of larger systems
I Warning: QM/MM methods can require very large QM

regions to converge environmental effects on localised
excitations.
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