
OpenMP in ONETEP

Karl Wilkinson and Nicholas Hine

J. Chem. Theory Comput. 2014, 10, 4782-4694

Motivation

Hardware is moving towards increasingly dense systems with
large numbers of cores per socket.

The number of cores that could be used in a ONETEP
calculation was subject to restrictions, reducing potential time
to solution:

Restriction 1: Number of MPI processes may sometimes be less than the
number of cores available on a node due to insufficient memory.

Restriction 2: Number of MPI processes must always be less than the
number of atoms due to algorithmic restrictions.

MPI and OpenMP
Message Passing Interface (MPI):

Each MPI “process” has its own memory space – communication of data
between processes is controlled explicitly.

OpenMP:
Shared memory model, each

thread can access the same

memory.

“Pragma” based approach.

MPI and OpenMP

Hybrid MPI/OpenMP reflects hardware layout:

MPI to distribute work across nodes and

OpenMP to distribute work between cores on a node.

OpenMP paradigms in ONETEP

1. Thread creation !$OMP PARALLEL DO

2. Thread merging !$OMP END PARALLEL

3. Thread blocking !$OMP CRITICAL

1
2

3

OpenMP Targets in ONETEP
1. General parallel operations: sparse linear algebra and

simulation cell FFTs

2. Operations on batches of FFT boxes

3. Operations on FFT boxes

FFT Box Operations

FFT Box Operations

Practical Considerations

Compilation
• Enable threading in MPI library

– At time of MPI library compilation (--enable-mpi-thread-multiple for
OpenMPI)

• FFT library

– Enable threading during library compilation (--enable-openmp)

– Link to threaded FFTW in ONETEP config file (-lfftw3_omp -lfftw3 –lm)

• Use OpenMP during ONETEP compilation:
• Intel: -openmp

• Gnu: -fopenmp

• PGI: -mp

Practical Considerations
ONETEP Keywords
1. General parallel operations: threadsmax and threadspercellfft

2. Operations on FFT box batches: threadsnumfftboxes and fftboxbatchsize

3. Operations on FFT boxes threadsperfftbox

4. Communications: comms_group_size

1 2

3

Practical Considerations
Job Submission
Machine dependent, typically well documented

ARCHER example:

 128 Nodes, 3072 cores

 4 OpenMP threads per MPI

 process

Avoid:

 Oversubscription

 Crossing NUMA regions

 (Non-uniform memory access)

Strong Scaling

• Increase number of cores for a fixed system size

• Direct measure of performance

• Tested for different ratios of MPI processes to OpenMP
threads for multiple systems containing ~4000 atoms

Calculations performed
on ARCHER using
production quality
settings:
50 a0 density cutoff
8.0 a0 NGWF radii
700-800 eV KE cutoff

Limited to 1 NGWF
iteration

Strong Scaling

Parallel Efficiency

• Compare performance against the ideal, given the number of
cores used

• Target is >50%

Parallel Efficiency

Parallel Efficiency

Performance: Large Systems

a) 13,969 atom beta amyloid
fibril on BlueJoule
• Large difference in

performance as pure MPI
cannot use all cores on a node
due to memory restriction.

• Pure MPI can only be executed
on up to 8192 cores.

b) 41,907 atom beta amyloid
fibril on BlueJoule
• Pure MPI does not scale to this

level

Summary

• Eases restrictions on number of atoms per core

• Significantly increases the scale of ONETEP calculations

• Parallel efficiency is system dependent: More ordered = more efficient

• Reduces time to solution for a given problem, but requires more cores.
– May be more efficient to run jobs in parallel, each on fewer cores.

– Overall benefit of using large numbers of cores depends on costing model at HPC center:
Develop execution model.

• Still work to do:
– Further optimization

– “Data parallel” code

– Intel Xeon Phi

Charging on TITAN: The TITAN hour

• One node hour = 30
TITAN hours

• 16 CPU compute units
(Shared FP scheduler)

• 14 GPU compute units
(Streaming Multiprocessors)

