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ABSTRACT: We present a hybrid MPI-OpenMP implementation P P T

of Linear-Scaling Density Functional Theory within the ONETEP SEIIRTIILIIILII

code. We illustrate its performance on a range of high performance A AP A 7}

computing (HPC) platforms comprising shared-memory nodes _ _

with fast interconnect. Our work has focused on applying OpenMP Mvia atnia atvia ol
HAE B B R

parallelism to the routines which dominate the computational load,
attempting where possible to parallelize different loops from those
already parallelized within MPL This includes 3D FFT box
operations, sparse matrix algebra operations, calculation of
integrals, and Ewald summation. While the underlying numerical omP OomP omp omp
methods are unchanged, these developments represent significant | ofaishs| bt | obbihs| obdishs| s | Apisie| Api| Apia-
changes to the algorithms used within ONETEP to distribute the |of#isi=| oldshs | otabir |- Apla [ Adia | oAdia | Apis. | sl
workload across CPU cores. The new hybrid code exhibits much-
improved strong scaling relative to the MPI-only code and permits
calculations with a much higher ratio of cores to atoms. These developments result in a significantly shorter time to solution than
was possible using MPI alone and facilitate the application of the ONETEP code to systems larger than previously feasible. We
illustrate this with benchmark calculations from an amyloid fibril trimer containing 41,907 atoms. We use the code to study the
mechanism of delamination of cellulose nanofibrils when undergoing sonification, a process which is controlled by a large
number of interactions that collectively determine the structural properties of the fibrils. Many energy evaluations were needed
for these simulations, and as these systems comprise up to 21,276 atoms this would not have been feasible without the
developments described here.
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Motivation

Hardware is moving towards increasingly dense systems with
large numbers of cores per socket.

The number of cores that could be used in a ONETEP
calculation was subject to restrictions, reducing potential time
to solution:

Restriction 1: Number of MPI processes may sometimes be less than the
number of cores available on a node due to insufficient memory.

Restriction 2: Number of MPI processes must always be less than the
number of atoms due to algorithmic restrictions.




MPI| and OpenMP

Message Passing Interface (MPI):

Each MPI “process” has its own memory space — communication of data
between processes is controlled explicitly.

PROGRAM HELLO
0 MP: INTEGER NTHREADS, TID, OMP_GET_NUM_THREADS,
pen . + OMP_GET_THREAD_NUM

Shared memory model, each C Fork a team of threads givingﬁhem their own copies of variables

!$0MP PARALLEL PRIVATE(NTHREADS, TI

thread can access the same

C Obtain thread number
memory. TID = OMP_GET_THREAD_NUM()

PRINT *, 'Hello World from thread = ', TID

C Only master thread does this
“Pragma” based approach. IF (TID .EQ. ©) THEN

NTHREADS = OMP_GET_NUM_THREADS ()

PRINT *, 'Number of threads = ', NTHREADS
END IF
C All threads join master thread and disband

!$0MP END PARALLEL

END

SCIENTIFIC
COMPUTING



MPI| and OpenMP

Hybrid MP1/OpenMP reflects hardware layout:
MPI to distribute work across nodes and
OpenMP to distribute work between cores on a node.
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OpenMP paradigms in ONETEP

1. Thread creation ISOMP PARALLEL DO
2. Thread merging ISOMP END PARALLEL
3. Thread blocking ISOMP CRITICAL




OpenMP Targets in ONETEP

1. General parallel operations: sparse linear algebra and

2. Operations on batches of FFT boxes
3. Operations on FFT boxes

simulation cell FFTs
é




FFT Box Operations
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2 OpenMP threads per
MPI process. 1 batch of
8 FFT box operations per
MPI process.

8 CPU cores, 4 FFT box
operations per CPU
core
32 FFT box operations -

4 batches of 8 FFT box
1 batch of 8 FFT box
operations per MPI

process.
4 CPU cores, 8 FFT box
operations per CPU
core

operations

I
I

1

31

(¥p) £l
- 4
O |
T N\ ——Y ““
a %.
-
=1

Q. g
I

O T B e s
X =
ﬁ_

@) S|
an) 5|
=

T I
LL 5
||||||| |

LL °)
|

21

=

|

I

- |

SCIENTIFIC
COMPUTING



Practical Considerations

Compilation

* Enable threading in MPI library

— At time of MPI library compilation (--enable-mpi-thread-multiple for
OpenMPI)

* FFT library
— Enable threading during library compilation (--enable-openmp)
— Link to threaded FFTW in ONETEP config file (-Ifftw3_omp -Ifftw3 —Im)

* Use OpenMP during ONETEP compilation:
* Intel: -openmp
* Gnu: -fopenmp
* PGl:-mp




Practical Considerations
ONETEP Keywords

1. General parallel operations: threadsmax and threadspercellfft

2. Operations on FFT box batches:  threadsnumfftboxes and fftboxbatchsize
3. Operations on FFT boxes threadsperfftbox

4. Communications: comms_group_size

|




Practical Considerations

Job Submission

Machine dependent, typically well documented

#!/bin/bash --login

ARCHER I . # PBS job options (nhame, compute nodes, job time)
examp e. #PBS -N Example_MixedMode_Job
#PBS -1 select=128

128 NOdES, 3072 cores #PBS -1 walltime=6:0:0
4 OpenMP threads per MPI # Replace [budget code] below with your project code (e.g. to1)

#PBS -A [budget code]
process .

# Make sure any symbolic links are resolved to absolute path
export PBS_O_WORKDIR=$(readlink -f $PBS_O_WORKDIR)

# Change to the direcotry that the job was submitted from
# (remember this should be on the /work filesystem)
cd $PBS_O_WORKDIR

Avoid:
# Set the number of threads to 4
Oversubscription # There are 4 OpenMP threads per MPI process

export OMP_NUM_THREADS=4
crOSSIng NUMA reglons # Launch the parallel job
-f # Using 128*%6 = 768 MPI processes
(Non-unl orm memory aCCESS) # 6 MPI processes per node
# 3 MPI processes per NUMA region
# 4 OpenMP threads per MPI process
aprun -n 768 -N 6 -5 3 -d 4 ./my_mixed_executable.x argl arg2 > my_stdout.txt
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Strong Scaling

* Increase number of cores for a fixed system size
* Direct measure of performance

* Tested for different ratios of MPI processes to OpenMP

threads for multiple systems containing ~4000 atoms
60

—e— 24 MPI 1 OMP

12 MPI 2 OMP
50 f —=— B MPI 4 OMP
—&— 4 MP| 6 OMP
2 MP1 12 OMP
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Speedup over 48 cores

Speedup over 48 cores
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Parallel Efficiency

 Compare performance against the ideal, given the number of
cores used

* Targetis >50%
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Parallel Efficiency wrt 48 cores

Parallel Efficiency wrt 48 cores
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Performance: Large Systems

a) 13,969 atom beta amyloid a) 200 -
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Summary

* Eases restrictions on number of atoms per core
* Significantly increases the scale of ONETEP calculations

* Parallel efficiency is system dependent: More ordered = more efficient

* Reduces time to solution for a given problem, but requires more cores.
— May be more efficient to run jobs in parallel, each on fewer cores.

— Overall benefit of using large numbers of cores depends on costing model at HPC center:
Develop execution model.

Still work to do:
— Further optimization
— “Data parallel” code
— Intel Xeon Phi



Charging on TITAN: The TITAN hour

* One node hour =30 e 16 CPU compute units
TITAN hours (Shared FP scheduler)

* 14 GPU compute units
(Streaming Multiprocessors)
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Costvs Time
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Cost vs Time
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