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ONETEP: Linear Scaling DFT
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Computational Effort in ONETEP - local potential matrix
elements

© Communication of grid data (extract)
V(r) (global) — V(r) (local)
@ FFTs (interpolate/filter) in FFTBox
V(r)9p(r) = FF [V(r) x 7.7 [¢p(r)]]

© NGWF comms & operations in FFTBox
@alV1op) = [ 0aIV()0p(e)er

© Sparse matrix algebra
(KH)%g = K%Hyg

Many other parts (sparse matrix setup, Ewald, whole-cell FFT, etc) but these are usually
comparatively trivial compared to those above
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Computational Effort in ONETEP - density

@ Sparse matrix algebra
(KS)O‘ﬁ =KS,8

© NGWF comms & operations in FFTBox

%K“ﬁ g (")]

coarse grid

© FFTs (interpolate/filter) in FFTBox

Palr) = 77 [9a(r)] x 75

ZKaﬁfPﬁ(f)]
B
@ Communication of grid data (deposit)

p(r) (global) =Y pa(r) (local)

Many other parts (sparse matrix setup, Ewald, whole-cell FFT, etc) but these are usually
comparatively trivial compared to those above
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Main Data Structures

o FFT boxes: stored for a ‘batch’ of NGWFs simultaneously

@ Whole cell grids (3-10 stored at any one time, dependent on options),
parallelised over slabs in 12-direction (real space)

@ Sparse Matrices (SPAM3 type) parallelised over columns
e Workspaces (300-500MB, depending on options)

Grouped Communications: nodes share data. Default group size is closest
power of two to square-root of number of processes (can adjust with
comms__group _size)

All-MPI Parallelism model has high memory requirements for high-accuracy
runs: often >2GB/core

Also, MPI Parallelism reaches saturation much below around 10 atoms per
core for large jobs
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Hybrid Parallelism

MPI Parallelism

Message Passing Interface

Splits code into lots of MPI
‘processes’, each running the
same code

Performance dependent on
interconnect speed between
nodes

Uses shared memory for
messages between processes
on same node, but still copies
between memory locations

OpenMP Parallelism
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Open Multi-Processing
Shared-Memory
multithreaded model - direct
access by one thread to
memory of another

Runs one ‘master’ thread,
which splits into multiple
threads inside PARALLEL
regions

Only acts within a node
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OpenMP Paradigm

ISOMP PARALLELNUM_THREADS(16)

\
a) iy VLT

b) ISOMP PARALLELNUM_THREADS(8)
ISOMP DO
doi=1, numit
IParallel code

ISOMP END PARALLEL

ISOMP CRITICAL
C) ISerially executed code
ISOMP END CRITICAL

end do
ISOMP END PARALLEL

K. A. Wilkinson, N. D. M. Hine, and C.-K. Skylaris Hybrid MPI-OpenMP
parallelism in the ONETEP linear-scaling electronic structure code:
Application to the delamination of cellulose nano-fibrils J. Chem. Theory
Comput. 10, 4782(2014)

N. D. M. Hine (Warwick) Hybrid OpenMP/MPI Masterclass 2017 7/23



Computational Effort in ONETEP

1. FFT Row Sum operations o First attempt: thread-parallelise
deposition of each ¢p(r) to FFTbox
[Zﬁ Kaﬁ ¢B(r)] FFTbox by PPDs

e Not much speedup, sometimes

slowdown from trying to write to
nearby cache lines of box

o Second attempt: for each ¢g(r)
communicated, thread-parallelise
over boxes to deposit it to

Communicate NGWF data, deposit to o Much better: near-linear speedup
large arrays with thread count within
n(r) = Y. 0a(r)K“ 95(r) deposition section.

op e Can be a source of performance

loss if comms is slow (need

Y 9a(r) ZKO‘B(P;;(I')] cleverer buffering)
¢ B FFTbox
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Computational Effort in ONETEP

2. FFT box Fourier Transforms

FFT bo;
CK. Skylaris, A. A. Mostofi,
A. A Mostofi, C.K. Skylaris,

. Haynes, C. ). Pickard & M. C. Payne, Comp. Phys. Comm. 140, 315 (2001)
Haynes & M. C. Payne, Comp. Phys. Comm. 147, 788 (2002)

3D FFTs on quite large box of local
data: major part of density, local
potential, nonlocal projectors, NGWF
gradient operations

FFT-box routines exhibit perfect scaling
due to complete locality of data.
Reminder: density operation involves

interpolation to fine grid due to product of two
NGWEFs:

p(r) =Y 9a(r)K* g5(r)
ap

@ Parallelise over interpolate/filter
operations on each FFTbox of a given
column function ¢u(r)

@ Needs fine/coarse workspace arrays for
each core (large)

@ Typical Size: (150-250)3 (50-250 MB)
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Computational Effort in ONETEP

2. FFT box Fourier Transforms
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Computational Effort in ONETEP

3. Whole Cell Grid Extract/Deposit

Simulation Cell

FFT Box

NGWEF Spheres
B8

’ R ’
holase s o UFN S o
(.

S
(2

o~

Node 0 Node 1 Node 2 Node 3

Transfer of local boxes to/from
distributed whole-cell arrays (deposit
density, extract potential)

Currently not thread parallel: occurs
inside '$0MP CRITICAL regions so
execution is limited to one MPI process at
a time

Ideally, would funnel all comms through
root process and overlap comms with
compute (hard to structure)

Also scope to reduce total amount of
comms by accumulating density in a big
box spanning all the FFThoxes in a batch

Or by communicating box limits for a
batch in advance and working out when
comms can be skipped entirely (avoids
synchronisation)
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Computational Effort in ONETEP
4. Sparse Matrix Algebra
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Computational Effort in ONETEP

4. Sparse Matrix Algebra
Thread-parallelise segment-segment pair operations:

MPI Parallelism —
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Figure 3: Schematic of the parallel decomposition of the workload for a sparse matrix multi-
plication under the hybrid OpenMP-MPI scheme, on 12 MPI processes. Blue shading indicates
segments containing non-zero elements. The red boxes highlight a specific segment of C local to
MPI process 6 and the range of segments of A and B which contribute to it. The green box indi-
cates the set of segments communicated by MPI process 3. of which only some are non-zero. The
OpenMP parallelism divides up the workload of each MPI process by dynamically distributing the
segment pair matrix product operations between available threads.

@ Requires Nipreads < Nprocesses tO get any speedup.

@ Alternative would be to multi-thread the DGEMM calls but this is not generally
very efficient except for huge matrices
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OpenMP thread controls

Controlled by four input variables or environment variables:

@ Thread count in routines with minimal workspace (Ewald, Sparse Algebra..):

o threads_max (pub threads max internally)
o defaults to OMP_NUM_THREADS

@ Thread count in FFTBox-based routines (density, locpot, kinetic, projectors)

o threads_num_fftboxes (pub_threads_num_fftboxes internally)
o defaults to OMP_NUM _THREADS

@ Thread count WITHIN EACH BOX FFT

e threads_per_fftbox (pub_threads max internally)
o defaults to 1 as not always supported (depends on libraries)

@ Thread count in whole-cell FFTs (hartree, GGAs, van der Waals DF, etc)

o threads_per_cellfft (pub_threads max internally)
o defaults to 1 as not always supported (depends on libraries)
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Stack size considerations

ONETEP requires a reasonably large ‘stack’ available: some clusters set this to be very
small by default

@ If you get a crash right at the start, ensure your script runs this command before
launching the code
e ulimit -s unlimited
@ However, this only affects the Master thread. Other thread stacks controlled by
environment variable
o OMP_STACKSIZE = 64M

@ Running with the intel compiler version 17, and Intel MPI 17, you may experience
an issue to do with interoperability between the two which leads to data
corruption. If you get nonsense, try:

o export |_MPI_OFA_TRANSLATION CACHE=0
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Memory Usage

@ FFT boxes: number controlled by fftbox_batch_size
@ Use at least threads num _fftboxes * 2 * n, n=1 is fine, sometimes
higher is better.:
o Less repeated NGWF comms (ideal is only send each NGWF once)
o But they take a lot of memory! 16 x64MB=1GB per MPI proc
@ Whole cell grids: keep an eye on how much time is spent in these operations
as it does not scale down with thread count
@ Memory of workspaces scales up with number of fftbox threads (300-500MB
/ proc, depending on options)
Grouped Communications: nodes share data. Default group size is closest power
of two to square-root of number of processes.

@ Sparse matrix operations: timings have considerable dependence on
comms_ group _size

All-MPI Parallelism needs more memory: 2GB / proc minimum
With OpenMP, can go down to 1GB / proc or below
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Performance in Small Systems
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Large Systems - ARCHER tests

Currently, each thread comes with a parallel efficiency hit due to routines

with no OpenMP and MPI-collectives
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Large Systems - ARCHER tests
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On more realistic systems ~4000 atoms: dropoff in parallel efficiency due to
limitations of sparse algebra and whole-cell grid ops. Still scales well to
~2000 cores.
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Very Large Systems - BG/Q tests
Amyloid Fibril: production-quality settings (8a0 NGWFs, 800eV psinc grid,

40a0 kernel cutoff), 13696 atoms, 36352 NGWFs. Excellent scaling to

16384 cores.
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Figure 8: a) Total time for 1 iteration of the 13,969 atom beta-amyloid fibril, for MPI-only (blue),
and 4/16, 8/32 and 16/64 OpenMP threads per MPI process (red, green, purple respectively). b)
Total time for the 41,907 atom Amyloid fibril trimer. Both sets of calculations consisted of 1 iter-
ation of the NGWF optimisation loop with production-quality settings (5 iterations of the density
kernel loop, 30.0 ap density kernel cutoff, 8.0 ap NGWF radii, 800 eV psinc kinetic energy cutoff)‘
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Timings output

If you are concerned your simulations are not achieving good parallel efficiency,
feel free to check with the developers

@ Set timings_level = 3 to get “self-timings’ (i.e. time spent in that routine and
nowhere else)

@ If you want to compare timings between runs, set timings _order = NONE to leave
timer output un-sorted.
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Conclusions

@ Hybrid OpenMP/MPI parallelism extends strong scaling considerably

@ Required OpenMP-parallelised loops at high levels, paying attention to load
balance and avoid or hide CRITICAL regions

@ General advice for most modern clusters: around 4 MPI processes per
node, 4-8 threads per process

@ Try to enable MPI process “pinning” with correct placement (check
advice in cluster documentation for how to achieve this)

Reference:
K. A. Wilkinson, N. D. M. Hine, and C.-K. Skylaris Hybrid MPI-OpenMP
parallelism in the ONETEP linear-scaling electronic structure code: Application to
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