Linear Scaling DFT with in-situ-optimised Local Orbitals using the Projector Augmented Wave Formalism. And EELS.

Nicholas D.M. Hine

Associate Professor, University of Warwick

ONETEP Masterclass 2017, Warwick, August 2017

Outline

1 The Projector Augmented Wave Method

2 PAW in ONETEP

Why PAW?

Projector Augmented Waves:

- Best aspects of PWPSP & best aspects of AE calculations
- Well-established formalism, implemented in ABINIT, VASP, PWSCF, etc
- Access to all-electron orbitals, density & potential near nucleus
- Allows softer pseudopotentials than Norm Conserving psps (many similarities to Vanderbilt usps)

P. E. Blöchl, Phys. Rev. B 50, 17953 (1994) (> 20000 citations)

N. D. M. Hine (Warwick)

Sum of Times Cited per Year

PAW transformation in Traditional DFT

Relates AE orbitals $|\psi_n\rangle$ to PS orbitals $|\tilde{\psi}_n\rangle$:

AE expectation values in terms of PS orbitals:

$$\langle \mathcal{A} \rangle = \sum_{n} f_n \langle \psi_n | \widehat{\mathcal{A}} | \psi_n \rangle = \sum_{n} f_n \langle \widetilde{\psi}_n | \tau^{\dagger} \widehat{\mathcal{A}} \tau | \widetilde{\psi}_n \rangle$$

Wavefunctions in PAW

Within a sphere around each atom:

- $|\phi_i\rangle$: AE partial waves (radial grid)
- $|\tilde{\varphi_i}
 angle$: PS partial waves (radial OR cartesian grid)
- $|\tilde{p}^i\rangle$: PAW projectors (cartesian grid) dual to PS partial waves for complete pw basis: $\langle \tilde{p}^i | \tilde{\varphi}_j \rangle = \delta_{ij}$

Kohn-Sham Eq:

$$\hat{H}|\psi_n\rangle = \varepsilon_n |\psi_n\rangle$$
$$\tau^{\dagger} \hat{H} \tau |\widetilde{\psi}_n\rangle = \varepsilon_n \tau^{\dagger} \tau |\widetilde{\psi}_n\rangle$$

Modified orthogonality condition for PS wfns:

 $\langle \psi_m | \psi_n
angle = \delta_{mn} \quad \Rightarrow \quad \langle \widetilde{\psi}_m | \hat{S} | \widetilde{\psi}_n
angle = \delta_{mn} \quad \text{with} \quad \hat{S} = 1 + |\widetilde{\rho}^i
angle (\langle \phi_i | \phi_j
angle - \langle \widetilde{\phi}_i | \widetilde{\phi}_j
angle) \langle \widetilde{\rho}^j | \widetilde{\phi}_j
angle$

Total Energies in PAW

AE total energy is:

$$E_T = \sum_n f_n \langle \psi_n | \frac{-1}{2} \nabla^2 | \psi_n \rangle + E_H[n_v + n_{Zc}] + E_{xc}[n_v + n_c] + E_{II}$$

Decomposes as:

$$E = \widetilde{E} + E^1 - \widetilde{E}^1 ,$$

(1)

where:

- A refers to a quantity evaluated for the PS orbitals
- A¹ refers to a quantity evaluated for the AE partial waves
- A¹ refers to a quantity evaluated for the PS partial waves
- \widehat{A} refers to a quantity involving the compensation density

Densities in PAW

For the density, we write

$$n(\mathbf{r}) = \sum_{n} f_{n} |\psi_{n}(\mathbf{r})|^{2} = \tilde{n}(\mathbf{r}) + n^{1}(\mathbf{r}) - \tilde{n}^{1}(\mathbf{r})$$
$$= \sum_{n} f_{n} |\tilde{\psi}_{n}(\mathbf{r})|^{2} + \sum_{ij} \rho^{ij} \varphi_{i}(\mathbf{r}) \varphi_{j}(\mathbf{r}) - \sum_{ij} \rho^{ij} \tilde{\varphi}_{i}(\mathbf{r}) \tilde{\varphi}_{j}(\mathbf{r})$$

 ρ^{ij} is a density matrix for the sphere part:

$$\rho^{ij} = \sum_{n} f_n \langle \tilde{\psi}_n | \tilde{\rho}^i \rangle \langle \tilde{\rho}^j | \tilde{\psi}_n \rangle$$

 $\tilde{n}(\mathbf{r})$ can be treated on regular grid, but $n^1(\mathbf{r})$ and $\tilde{n}^1(\mathbf{r})$ must be treated on radial grid around each atom for high accuracy.

Outline

D The Projector Augmented Wave Method

ONETEP

Represent DM with non-orthogonal local orbitals $\phi_{\alpha}(\mathbf{r})$ and density kernel $\mathcal{K}^{\alpha\beta}$

 $\rho(\mathbf{r},\mathbf{r}') = \phi_{\alpha}(\mathbf{r}) \mathcal{K}^{\alpha\beta} \phi_{\beta}(\mathbf{r}')$

Energy: $E_T = Tr(KH) - E_{dc}$

- Local orbitals, $H_{\alpha\beta} = \langle \phi_{\alpha} | \hat{H} | \phi_{\beta} \rangle$ and $S_{\alpha\beta} = \langle \phi_{\alpha} | \phi_{\beta} \rangle$ and sparse matrices
- Density matrix nearsighted for insulators, so K^{αβ} is sparse.
- Enforce normalisation and idempotency of DM while minimising energy E_T to optimise kernel K^{αβ}
- Optimise form of φ_α(r) via systematic underlying basis

No use of eigenstates!

ONETEP

NGWFs

Psinc basis equivalent to plane-waves:

Minimal local orbital basis, systematic wrt real & recip-space cutoffs

FFT Boxes

Local $\phi_{\alpha} \Rightarrow$ moving FFT box Kinetic/NL in recip-space

O(N) evaluation of $\langle \phi_{\alpha} | \hat{A} | \phi_{\beta} \rangle$

Sparse Matrix Algebra

Efficient parallelisation and load balance

Existing Kernel Optimisation

algorithms Purification / Penalty / LNV

Advantages of ONETEP

Accurate: equivalent to plane waves Scales as O(N) with system size High parallel efficiency on thousands of cores Vacuum is 'free'

.. Problems

No use of eigenstates: how to apply PAW transformation? How to design a general approach to augmentation

www.onetep.org; CK Skylaris, PD Haynes, AA Mostofi and MC Payne, J. Chem. Phys. 122, 084119 (2005) NDM Hine, PD Haynes, AA Mostofi, C-K Skylaris, MC Payne, Comput. Phys. Commun. 180, 1041 (2009)

Need equivalent PAW transformation on DM:

$$oldsymbol{
ho} \hspace{0.1 cm} = \hspace{0.1 cm} \widetilde{
ho} \hspace{0.1 cm} + \hspace{0.1 cm} \sum_{ij} ig(ert arphi_i
angle \widetilde{
ho}^i ert \widetilde{
ho}^i ert \widetilde{
ho}^j
angle \langle \widetilde{arphi}_j ert ert ert ert \widetilde{
ho}_j ert
angle \langle ert \widetilde{
ho}_j ert ert \widetilde{
ho}_j ert
angle
angle ig)$$

NGWFs constructed out of psinc functions, equivalent to plane-waves: $\phi_{\alpha}(\mathbf{r}) = \sum_{i} c_{\alpha i} D(\mathbf{r} - \mathbf{r}_{i})$

$$D(\mathbf{r}) = \frac{1}{N_1 N_2 N_3} \sum_{K=-J_1}^{J_1} \sum_{L=-J_2}^{J_2} \sum_{M=-J_3}^{J_3} e^{i(K\mathbf{B_1} + L\mathbf{B_2} + M\mathbf{B_3}) \cdot \mathbf{r}}$$

Ideal for soft part of DM:

$$\widetilde{\rho} = |\phi_{\alpha}\rangle \kappa^{\alpha\beta} \langle \phi_{\beta}|$$

It is the all-electron density matrix which must be normalised:

$$\int
ho(\mathbf{r},\mathbf{r})\,\mathrm{d}\mathbf{r}=N_e$$

and idempotent:

$$\int \rho(\mathbf{r},\mathbf{r}'')\rho(\mathbf{r}'',\mathbf{r}')\,\mathrm{d}\mathbf{r}''=\rho(\mathbf{r},\mathbf{r}')$$

ONETEP (& other LS-DFT codes) uses a variety of methods (purification, LNV, penalty-functionals...) to enforce these conditions while minimising energy

For NCPPs, this means, for $S^{
m NC}_{lphaeta}=\langle \phi_lpha|\phi_eta
angle$

 $\operatorname{Tr}(KS) = N_e$ $(KSK)^{lphaeta} = K^{lphaeta}$

We can use the PAW overlap operator

$$\widehat{m{S}}=\widehat{1}+|\widetilde{
ho}^i
angle(\langle arphi_i|arphi_j
angle-\langle \widetilde{arphi}_i|\widetilde{arphi}_j
angle)\langle \widetilde{
ho}^j|$$

to define an 'augmented' overlap matrix:

$$\mathcal{S}_{lphaeta}=\langle \phi_lpha|\phi_eta
angle+\langle \phi_lpha|\widetilde{
ho}^i
angle O_{ij}\langle\widetilde{
ho}^j|\phi_eta
angle$$

which can be constructed easily with sparse matrix algebra

Retain exact same algorithms for normalisation, LNV etc:

$$N_e = \text{Tr}(KS)$$
; $K = 3LSL - 2LSLSL$ etc

so LNV/Penalty algorithms remain the same.

PS Hamiltonian retains same general form – obtained via $d/d\widetilde{
ho}$

$$\begin{split} \tilde{H}_{\alpha\beta} &= \langle \phi_{\alpha} | \tilde{H} | \phi_{\beta} \rangle \\ &= \langle \phi_{\alpha} | \left(-\frac{1}{2} \nabla^{2} + \tilde{V}_{\text{eff}}(\mathbf{r}) + \sum_{ij} | \tilde{p}_{i} \rangle \left(\hat{D}_{ij} + D^{1}_{ij} - \tilde{D}^{1}_{ij} \right) \langle \tilde{p}_{j} | \right) | \phi_{\beta} \rangle \\ &= T_{\alpha\beta} + \tilde{V}_{\alpha\beta}^{\text{eff}} + \langle \phi_{\alpha} | \tilde{p}_{i} \rangle \left(\hat{D}_{ij} + D^{1}_{ij} - \tilde{D}^{1}_{ij} \right) \langle \tilde{p}_{j} | \phi_{\beta} \rangle \end{split}$$

Nonlocal energies are dependent on local electronic structure:

$$\begin{split} \widehat{D}_{ij} &= \sum_{LM} \int \widetilde{v}_{H}[\widetilde{n} + \widehat{n} + \widetilde{n}_{Zc}](\mathbf{r}) \widehat{Q}_{ij}^{LM}(\mathbf{r}) d\mathbf{r} , \\ D_{ij}^{1} &= \langle \varphi_{i} | \frac{-1}{2} \nabla^{2} + v_{eff}^{1} | \varphi_{j} \rangle \\ \widetilde{D}_{ij}^{1} &= \langle \widetilde{\varphi}_{i} | \frac{-1}{2} \nabla^{2} + \widetilde{v}_{eff}^{1} | \widetilde{\varphi}_{i} \rangle + \sum_{LM} \int \widetilde{v}_{H}[\widetilde{n}^{1} + \widehat{n} + \widetilde{n}_{Zc}](\mathbf{r}) \widehat{Q}_{ij}^{LM}(\mathbf{r}) d\mathbf{r} \end{split}$$

Density is 'augmented' with soft charges to get right multipole moments LM:

$$\widehat{n}(\mathbf{r}) = \sum_{LM} \sum_{ij}
ho^{ij} \widehat{Q}^{LM}_{ij}(\mathbf{r})$$

Augmentation density is constructed in small reciprocal space FFTboxes centered on atoms:

$$\widehat{n}(\mathbf{r}) = \mathscr{F}\left[\sum_{LM}\sum_{ij}\rho^{ij}\widehat{Q}_{ij}^{LM}(\mathbf{G})e^{i\mathbf{G}.(\mathbf{R}_{I}-\mathbf{R}_{\mathrm{box}})}\right]$$

Augmenation box also used for screening of nonlocal energies

 \Rightarrow All PAW extensions are confined to spheres around each atom and thus are O(N)

PAW optimisation of NGWFs

Initialise NGWFs to pseudoatomic orbitals of PAW dataset Change of overlap matrix with NGWFs is now

$$rac{\partial \, {\cal S}_{metalpha}}{\partial \left< \phi_{m\gamma}
ight|} = \Bigl(| \phi_{lpha}
angle + \sum_{ij} | ilde{p}_i
angle {\cal O}_{ij} \langle ilde{p}_j | \phi_{meta}
angle \Bigr) \delta_{mbeta \gamma} \, .$$

Leads to extra term in NGWF gradient:

$$\begin{aligned} \frac{\partial E}{\partial \phi_{\gamma}(\mathbf{r})} &= \frac{\partial}{\partial \phi_{\gamma}(\mathbf{r})} \Big[\frac{\mathcal{K}^{\alpha\beta} \tilde{\mathcal{H}}_{\beta\alpha} N_{e}}{\mathcal{K}^{\kappa\lambda} S_{\lambda\kappa}} \Big] \\ &= \mathcal{K}^{\alpha\beta}_{n} [\tilde{\mathcal{H}} \phi_{\beta}](\mathbf{r}) + \Big(\phi_{\beta}(\mathbf{r}) + \sum_{ij} \tilde{p}_{i}(\mathbf{r}) O_{ij} \langle \tilde{p}_{j} | \phi_{\beta} \rangle \Big) \tilde{Q}^{\alpha\beta} \end{aligned}$$

Forces

$$\begin{split} \mathbf{F}_{I} &= -\frac{\partial E}{\partial \mathbf{R}_{I}} - \left\{ \frac{\partial E}{\partial |\phi_{\alpha}\rangle} \frac{d|\phi_{\alpha}\rangle}{d\mathbf{R}_{I}} + \frac{\partial E}{\partial \langle\phi_{\alpha}|} \frac{d\langle\phi_{\alpha}|}{d\mathbf{R}_{I}} \right\} \\ &= -\frac{\partial E}{\partial \mathbf{R}_{I}} - \left\{ K^{\alpha\beta} \langle\phi_{\beta}| \hat{H} \frac{d|\phi_{\alpha}\rangle}{d\mathbf{R}_{I}} + \frac{d\langle\phi_{\alpha}|}{d\mathbf{R}_{I}} \hat{H} |\phi_{\beta}\rangle K^{\beta\alpha} \right\} \\ &= -\frac{\partial E}{\partial \mathbf{R}_{I}} + K^{\alpha\delta} H_{\delta\gamma} S^{\gamma\beta} \langle\phi_{\beta}| \frac{d\hat{S}}{d\mathbf{R}_{I}} |\phi_{\alpha}\rangle \,, \end{split}$$

$$\mathbf{F}_{I}^{\text{loc}} = -\int (\widetilde{n}(\mathbf{r}) + \widehat{n}(\mathbf{r})) \frac{\partial v_{\text{H}}[\widetilde{n}_{Zc}](\mathbf{r})}{\partial \mathbf{R}_{I}} \, \mathrm{d}\mathbf{r} \,,$$

(2)

$$\mathbf{F}_{I}^{\text{nlcc}} = -\int v_{\text{xc}} [\widetilde{n} + \widetilde{n}_{\text{c}}] \frac{\partial \widetilde{n}_{\text{c}}(\mathbf{r})}{\partial \mathbf{R}_{I}} \, \mathrm{d}\mathbf{r}$$

$$\widehat{\mathbf{F}}_{I} = -\int \widetilde{\mathbf{v}}_{\mathrm{H}}[\widetilde{\mathbf{n}} + \widehat{\mathbf{n}} + \widetilde{\mathbf{n}}_{\mathrm{Zc}}](\mathbf{r}) \frac{\partial \mathbf{n}(\mathbf{r})}{\partial \mathbf{R}_{I}} \,\mathrm{d}\mathbf{r}$$

$$\begin{split} \mathbf{F}_{I}^{\mathrm{nl}} &= \sum_{\nu \in I} \left[-D_{\nu\mu} \langle \widetilde{p}^{\mu} | \phi_{\alpha} \rangle \mathcal{K}^{\alpha\beta} \left\langle \phi_{\beta} | \frac{\partial \widetilde{p}^{\nu}}{\partial \mathbf{R}_{I}} \right\rangle \right. \\ &\left. - \left\langle \frac{\partial \widetilde{p}^{\nu}}{\partial \mathbf{R}_{I}} | \phi_{\alpha} \right\rangle \mathcal{K}^{\alpha\beta} \langle \phi_{\beta} | \widetilde{p}^{\mu} \rangle D_{\mu\nu} \right. \\ &\left. + O_{\nu\mu} \langle \widetilde{p}^{\mu} | \phi_{\alpha} \rangle \mathcal{K}^{\alpha\gamma} H_{\gamma\delta} S^{\delta\beta} \left\langle \phi_{\beta} | \frac{\partial \widetilde{p}^{\nu}}{\partial \mathbf{R}_{I}} \right\rangle \right. \\ &\left. + \left\langle \frac{\partial \widetilde{p}^{\nu}}{\partial \mathbf{R}_{I}} | \phi_{\alpha} \right\rangle \mathcal{K}^{\alpha\gamma} H_{\gamma\delta} S^{\delta\beta} \langle \phi_{\beta} | \widetilde{p}^{\mu} \rangle O_{\mu\nu} \right] . \end{split}$$

PAW Datasets

How do you activate PAW?

PAW : True

But then you need PAW Datasets rather than NCPPs.

Precalculated $|\varphi_i\rangle$, $|\tilde{\varphi}_i\rangle$, $|\tilde{p}^i\rangle$, $n_c(r)$, $\tilde{n}_c(r)$, D_{ij}^0 , $v_{\rm H}[\tilde{n}_{Zc}](r)$

- AtomPAW or Vanderbilt uspp codes can create them, in same format as ABINIT
- Existing "JTH" library available in suitable format (links on ONETEP FAQ)

http://www.onetep.org/onetep/pmwiki/uploads/Main/FAQ/JTH-PBE-atomicdata-1.0.tar.gz

http://www.onetep.org/onetep/pmwiki/uploads/Main/FAQ/JTH-LDA-atomicdata-1.0.tar.gz

Important that projectors are smooth (be careful if developing your own!)

Convergence - Silicon 64-atom cell

• Converges well by all standard measures (step length goes to zero)

Convergence - NGWFs

• Convergence for a model of PTCDA - major improvement over NCPPs

Agreement with ABINIT

Nitrogen molecule: N2

N. D. M. Hine (Warwick) PAW in ONETEP, ONETEP Masterclass MC2017 16/09/2017 21 / 29

Agreement with All-Electron Calculations

Comparison with Elk FP-LAPW code:

Calculation times

Overhead of PAW is very low:

Timings for Si64 on 64 cores

Calculation times

24 / 29

Augmentation

Augmentation of a matrix is a very general concept in LS-PAW

For traditional $O(N^3)$ PAW implementations, one calculates expressions like:

$$\langle A \rangle = \sum_{n} f_{n} \langle \psi_{n} | \widehat{A} | \psi_{n} \rangle = \sum_{n} f_{n} \langle \widetilde{\psi}_{n} | \widehat{A} | \widetilde{\psi}_{n} \rangle + \sum_{n} f_{n} \langle \widetilde{\psi}_{n} | \widetilde{\rho}^{i} \rangle (\langle \varphi_{i} | \widehat{A} | \varphi_{j} \rangle - \langle \widetilde{\varphi}_{i} | \widehat{A} | \widetilde{\varphi}_{j} \rangle) \langle \widetilde{\rho}^{j} | \widetilde{\psi}_{n} \rangle$$

For LS-PAW, we can 'augment' the matrix elements in terms of local orbitals:

$$\langle \phi_{\alpha} | \widehat{\boldsymbol{A}} | \phi_{\beta} \rangle^{\text{aug}} = \langle \phi_{\alpha} | \widehat{\boldsymbol{A}} | \phi_{\beta} \rangle + \langle \phi_{\alpha} | \widetilde{\rho}^{i} \rangle (\langle \varphi_{i} | \widehat{\boldsymbol{A}} | \varphi_{j} \rangle - \langle \widetilde{\varphi}_{i} | \widehat{\boldsymbol{A}} | \widetilde{\varphi}_{j} \rangle) \langle \widetilde{\rho}^{j} | \phi_{\beta} \rangle$$

So eg for dipole moment:

$$\begin{split} \mathbf{d}_{\mathrm{el}} &= \mathcal{K}^{\beta \alpha} [\langle \phi_{\alpha} | \mathbf{r} | \phi_{\beta} \rangle \\ &+ \langle \phi_{\alpha} | \widetilde{\rho}^{i} \rangle (\langle \phi_{i} | \mathbf{r} | \phi_{j} \rangle - \langle \widetilde{\phi}_{i} | \mathbf{r} | \widetilde{\phi}_{j} \rangle) \langle \widetilde{\rho}^{j} | \phi_{\beta} \rangle] \\ &= \mathcal{K}^{\beta \alpha} \langle \phi_{\alpha} | \mathbf{r} | \phi_{\beta} \rangle^{\mathrm{aug}} \end{split}$$

PW Avraam, NDM Hine, P Tangney, and PD Haynes, Phys. Rev. B 83, 241402(R) (2011); PW Avraam, NDM Hine, P Tangney, PD Haynes, Phys. Rev. B 85 115404 (2012); NDM Hine, PW Avraam, P Tangney, and PD Haynes, Phys. J. Phys. Conf. Ser. 367, 012002 (2012).

Outline

D The Projector Augmented Wave Method

2 PAW in ONETEP

Example: $MoS_2/MoSe_2$ heterostructure – 4-5% lattice mismatch produces incommensurate interface. Interlayer interactions may depend on lattice mismatch angle:

(images by G. Constantinescu)

These structures contain Mo, W, Se etc \rightarrow PAW very useful

N. D. M. Hine (Warwick)

PAW in ONETEP, ONETEP Masterclass

MC2017 16/09/2017 27 / 29

TMDC Heterostructures: Bandstructure Projection

- Reduces spectral weight for Γ → K transitions, allowing for improved Photoluminescence.
- Indirect transitions redshifted compared to monolayers, as shown in MoS₂/WSe₂ bilayers
- Hole mass near Γ varies with angle (increases towards 60°) due to different portions of the BZ coming to momentum alignment.

Pressure-Induced Phase Transformations in Nanomaterials

Pressure causes phase transformations (eg ZB to RS) in CdS, CdSe nanocrystals

Optical properties of resulting nanoparticles important for sensor & photovoltaics applications

Many interesting effects of ligands, size, shape, etc.

Conclusions

- PAW Framework integrates well into ONETEP: similarity of underlying psinc basis to plane-waves
- Minimal overhead compared to equivalent NCPP calculation (somewhat higher complexity of code!)
- Enables low-cost treatment of transition metal oxides
- Future extensions to NMR, EFG, etc;

