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This document is intended as a guide to the molecular dynamics (MD) functionality
in ONETEP (v4.4) [1]. Though some theoretical concepts are reviewed, it is not meant
to be a stand-alone introduction to Born-Oppenheimer Molecular Dynamics (BOMD)
simulations. The reader is referred to the textbook of Frenkel and Smit [2] for a review
of the field.

1 Integrating the equations of motion

The MD functionality implemented in ONETEP is founded on the Born-Oppenheimer
approximation which states that the electrons are much lighter than nuclei, the dynamics
of electrons is much faster compared to the dynamics of the nuclei. As a consequence,
the former can be considered to react instantaneously to the motion of the latter. The
forces acting on the nuclei are derived from the ground state electronic configuration by
means of the Hellmann-Feynamn theorem. The motion of the nuclei is described by the
laws of classical mechanics

∂H

∂r
= −ṗ and

∂H

∂p
= ṙ (1)

where H is the Hamiltonian (or the total energy) of the system and r, p are the nuclei
positions and conjugate momenta. At each MD steps, the forces on the particles are
computed, and the particles positions and momenta are updated according to Newton’s
equations of motion. Though this is an excellent approximation for many materials,
it is important to keep in mind that classical dynamics does not account for quantum
phenomena such as zero point motion, tunneling, or quantum fluctuations which may
play a significant role in the dynamics of some systems.

In a BOMD simulation, the classical laws of motion are integrated using a finite
difference scheme (that usually preserves the symplectic structure of phase space, e.g.
the Velocity-Verlet algorithm [3, 4]). For small enough time steps, the particle trajec-
tory becomes independent of the discretization and the total energy of the system is
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conserved. At room temperature and in situation close to equilibrium, a time step ∆t
of a fraction of a femtosecond is usually adopted.

The Velocity-Verlet algorithm corresponds to the following set of four operations:

1 : vn+1/2 = vn +
∆t

2m
∗ Fn (2)

2 : rn+1 = rn + ∆t ∗ vn+1/2 (3)

3 : Compute ionic forces Fn+1 (4)

4 : vn+1 = vn+1/2 +
∆t

2m
∗ Fn+1 (5)

where subscripts are used to label the MD time steps. This approach yields a reversible
integrator that weights correctly the phase space and conserves the phase space volume.

The velocities in eqs. (2)-(5), are the internal (or peculiar) velocities and not the
atomic velocities. Internal velocities are used to properly take into account the internal
motion of the system, for which the total linear momentum must vanish. When using
open boundary conditions, the use of internal velocities ensures that also the total in-
ternal angular momentum vanishes. By setting the total linear (angular) momentum to
zero at the beginning of a simulation while employing atomic velocities in eqs. (2)-(5),
does not guarantee to keep the linear (angular) momentum conserved. This is due to nu-
merical errors that unavoidably modify the initial values. One of the possible drawback
is the well-known “flying ice cube effect”. The interested reader is referred to Ref. [14]
for a comprehensive description. However, before printing out the trajectory info to the
rootname.md file, the internal velocities are transformed back to the atomic velocities for
visualization and post-processing. In the limit of very long time, the ergodic hypothesis
is invoked which allows us to derive ensemble averages from the molecular trajectories.

Basic input parameters

The Molecular Dynamics functionality is activated by setting the input
parameter TASK to MOLECULARDYNAMICS. If a fresh calculation is started,
the initial nuclear positions are read from the POSITIONS ABS block while
the nuclear velocities are obtained from the VELOCITIES block. If the
latter is not specified, the velocities are drawn from a maxwell-boltzmann
distribution at a (user defined) temperature set in the THERMOSTAT block
(see Thermostats section). The values of ∆t is determined by the parameter
MD DELTA T. The number of integration steps is fixed by MD NUM ITER.

For example, the following set of input parameters instructs the code to
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run a 4 ps long BOMD calculation with ∆t = 0.8 fs.

TASK : MOLECULARDYNAMICS
MD DELTA T : 0.8 fs
MD NUM ITER : 5000

MD PROPERTIES : T
MD RESTART : F

The flag MD PROPERTIES instructs the code to enter the properties mod-
ule at each MD steps. During the calculation a file rootname.md is gen-
erated that contains a summary of the trajectory, such as temperature,
energies, nuclear positions, velocities and forces at each MD steps. Addi-
tionally, the latest phase space coordinates are stored in the unformatted file
rootname.md.restart. The flag MD RESTART enables to restart an MD cal-
culation from the phase space coordinates stored in rootname.md.restart.
It is important to stress here that MD NUM ITER is an incremental counter.
This means that the when starting a fresh calculation the number of MD
steps corresponds to MD NUM ITER, while for a restart calculation the actual
number of MD steps is calculated as the difference between MD NUM ITER

and the total number of MD steps completed up to that point. Therefore,
if we want to continue the 4 ps long calculation of the previous example for
other 4 ps, we would have to set

TASK : MOLECULARDYNAMICS
MD DELTA T : 0.8 fs
MD NUM ITER : 10000

MD PROPERTIES : T
MD RESTART : T

2 Thermostats

The THERMOSTAT block must be defined for any MD calculation, even when performing
microcanonical runs. For equilibration purposes or to extract thermodynamical aver-
ages, it is often desirable to sample the canonical ensemble (constant-NVT) rather than
the microcanonical one (constant-NVE). In order to achieve this, there needs to be a
mechanism (i.e. a thermostat) by which the system can exchange energy with the rest of
the universe. Several thermostats, Andersen, Langevin, Nose-Hoover chains, Berendsen
and Bussi, are available in ONETEP.
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2.1 Andersen thermostat

One of the simplest constant temperature algorithm has been proposed by Andersen [5].
The system is thermally coupled with a bath of fictitious particles at temperature T .
Practically this coupling acts by replacing the momentum of a number of atoms by a new
momentum derived from the appropriate Boltzmann distribution. The strength of the
coupling can be adjusted by fixing the characteristic time (τ) at which the momentum
rescaling occurs and the amplitude (γ) of the rescaling. Eventually, the probability that
collision occurs during a time step ∆t is given by,

qcol = 1− e−∆t/τ (6)

and the collision on atom i acts as,

pnew =
√

(1− γ2) p+ γ pboltzmann, (7)

where pnew is the momentum rescaled by Andersen thermostat, and pboltzmann is a
random variable with appropriate Boltzmann distribution.

2.2 Langevin thermostat

The Langevin thermostat accounts for the motion of the atoms in the presence of a
fictitious viscous solvent [6]. As they have to be pushed away, the solvent particles create
a friction force damping the momentum of the atoms. Besides random perturbations
of the ionic forces arise from the collisions between the atoms and the solvent particles.
Langevin dynamic corresponds to the modified equation of motion,

ṗα = Fα − γ
pα
mα

+ fα (8)

where greek superscripts label the nuclei, Fα are the conservative forces acting on the nu-
clei, γ is the damping factor associated with the solvent viscosity and fα are the random
forces accounting for the collisions. In order to guarantee NVT statistics, the random
forces and the damping factor are chosen so as to fulfill the fluctuation-dissipation the-
orem. Eventually, the update of the nuclei momenta pα and forces Fα is given by,

pnewα = pα ∗ e−γ∆t (9)

Fnewα = Fα ∗
1

γ
(1− e−γ∆t) + fα (10)

fα =

√
mαkBT (1− e−2γ∆t)

∆t2
∗ ξα (11)

where {ξα} is a set of mutually uncorrelated random Gaussian variables with a zero
mean and unit variance.
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2.3 Nosé-Hoover thermostat and Nose-Hoover chains

In the Andersen and Langevin approaches, the constant temperature is achieved by
stochastic collisions with fictitious particles. The approach of Nosé is different and allows
to perform deterministic MD at constant temperature [7, 8]. To achieve isothermal
MD, an additional coordinate associated with an effective mass is introduced in the
Lagrangian ruling the dynamics of the nuclei. For a derivation of the equations of
motion, the reader is referred to the textbook of Berend and Smith. Provided the center
of mass of the system remains fixed, the Nosé-Hoover thermostat leads to a canonical
distribution of positions and momenta. To alleviate this restriction on the center of mass,
the nuclei are coupled to a Nosé-Hoover thermostat whose fluctuations are determined by
another thermostat (i.e. the so called Nosé-Hoover chains). In ONETEP, the effective
masse of the thermostats (Qthi) is chosen, following the prescription of Martyna and
Tuckerman [10], as

Qth1 = 3N
kBT

ω2
(12)

Qthi =
kBT

ω2
, (13)

where N is the number of nuclei and ω = 2π/τ is the characteristic frequency of the
thermostats. That parameter τ has to be chosen so as to guarantee a good coupling
with the atomic system. E.g. when water is used as solvent in the system, a value of
9.4 fs is appropriate as it corresponds to the first asymmetric stretching mode of water
molecules.

2.4 Berendsen thermostat

In the Berendsen thermostat, the ionic equation of motions are supplemented by a first
order equation for the kinetic energy,

dK =
Kt −K

τ
dt , (14)

where Kt stands for the target kinetic energy. The weak coupling of the system with
the heat bath is determined by the time constant τ . This thermostat does not generate
a canonical ensemble but is vary efficient for thermalization of large systems.

2.5 Canonical velocity scaling

An extension of the Berendsen thermostat allows to recover the canonical distribution
of the kinetic energy. In this approach, the instantaneous kinetic energy is propagated
using an auxiliary stochastic dynamics. The equation of motion for the kinetic energy
is defined as,

dK =
Kt −K

τ
dt + 2

√
KKt

3Nτ
dW , (15)
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whereKt stands for the target kinetic energy and dW is a Wiener noise. For a complete
derivation of the equations of motion, the reader is referred to G. Bussi et al. [9]. In
the same way as for the Berendsen thermostat, the coupling of the system with the heat
bath is determined by the characteristic time τ .
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Thermostat definition

The parameters related to constant-NVE or constant-NVT sampling are
determined by means of the THERMOSTAT block. For a constant-NVE calcu-
lation, the thermostat block is needed to specify the initial temperature for
the maxwell-boltzmann distribution, from which initial velocities are drawn.
For constant-NVT sampling, different thermostats can be associated with
different groups of atoms.

%block thermostat

start iter end iter thermo name temp ! First thermostat definition
option 1 = value ! Optional parameter 1
option 2 = value ! Optional parameter 2

start iter stop iter thermo name temp ! Second thermostat definition
option 1 = value ! Optional parameter 1
option 2 = value ! Optional parameter 2

%endblock thermostat

A thermostat definition contains four mandatory parameters and
several optional parameters. The mandatory parameters are : the starting
and stopping MD steps (these must be set bearing in mind the global
counter logic), the type of thermostat (i.e. none, andersen, langevin,
nosehoover, berendsen, or bussi,) and the temperature. The line
containing the mandatory parameters may be followed by one or more of
optional parameter definition (one per line).

Let us set an NVT calculation at 300K with Langevin thermostat for
the equilibration (3000 steps) and Nosé-Hoover thermostat for the thermo-
dynamical sampling (10000 steps). The input parameters could look like

%block Thermostat

0 3000 langevin 300.0 K
damp = 0.2

3001 13000 nosehoover 300.0 K
nchain = 4
nsteps = 10
tau = 100 fs

%endblock Thermostat
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If both MD RESTART and MD RESTART THERMO flags are set to true,
the thermostat internal parameters are initialized from the val-
ues found in the unformatted file namedrootname.thermo.restart
(rootname.thermo.global.restart if MD GLOBAL RESTART = .true., see
section on MD history). This is particularly useful when using Nosé-Hoover
thermostat as it avoids any disruption in the trajectories of the thermostat
coordinates. A formatted report on the thermostat trajectories is outputted
in the file rootname.thermo.

8



Thermostat optional parameters

tgrad (Physical) (default = 0K)
Discrete variation of temperature T per MD step.

group (Integer) (default = 0)
Index of the group of atoms (as defined in positions abs) to wich the
thermostat is coupled. If no group of atoms is specified the thermostat
is applied to the full system (i.e. group index 0).

tau (Physical) (default = 10*MD DELTA T)
Characteristic time scale of the thermostat. Depending on the type of
thermostat, it may relate either to the average collision frequency (see
Eq.6) or the thermostat fluctuation frequency (see Eqs. 12 and 13) or
to the coupling with the heat bath (see Eqs. 14 and 15).

mix (real) (default = 1.0)
Collision amplitude of the Andersen thermostat (see Eq. 7).

damp (real) (default = 0.2)
Damping factor in the Langevin equation of motion (see Eq. 8).

nchain (integer) (default = 0)
Number of thermostats in the Nosé Hoover chain.

nsteps (integer) (default = 20)
Number of substep used to integrate the equation of motion of the
Nosé-Hoover coordinates.

update (logical) (default = .false.)
Impose to update the effective masses of the Nosé-Hoover coordinates
when the temperature is modified.
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3 Using MD history

In order to predict sensible trajectories and ensemble averages, BOMD requires to solve
the self-consistent field (SCF) equations that determines the ground-state electronic
structure at each MD steps. Solving the SCF equations therefore dominates the com-
putational effort. The number of SCF cycles required to reach a given level of self-
consistency can be substantially reduced by using a good initial guess for the electronic
degrees of freedom. Various schemes have been proposed that enable to make a good
use of the MD history in order to build efficient initial guesses.

3.1 Extrapolation of NGWFs and density kernel

In ONETEP [1], the Kohn-Sham SCF equations are formulated in terms of the single-
particle density matrix ρ(x,x′),

ρ(x,x′) = φα(x) Kαβ φ∗β(x′) , (16)

where Einstein’s notation for repeated indices has been used. {φα(x)} is a set of lo-
calised support functions, hereafter named Non-orthogonal Generalized Wannier Func-
tions (NGWFs), and K is the kernel representing the density operator. At each MD
step, the total energy is minimized with respect to both the density kernel and the sup-
port functions. Here below, we briefly review various algorithms that allows to initialise
the density kernel and NGWFs by extrapolation from previous time steps.

Hereafter, χinit
i and χscf

i are used to represent respectively the initial guess and SCF
solution for either the density kernel or a given NGWF at time t = i∆t.

One-dimensional linear extrapolation :
The simplest attempt at a trial configuration for the electronic degrees of freedom
is the linear extrapolation,

χinit

(i+1) = 2χscf
i − χscf

(i−1). (17)

Multi-dimensional linear extrapolation :
The idea of multi-dimensional linear extrapolation was first proposed by Arias,
Payne and Joannopoulos for the generation of trial wavefunctions [11]. The one-
dimensional linear extrapolation scheme creates an acceptable initial configuration
for the ionic coordinates r′ = 2ri − r(i−1). However, the actual coordinates ri+1

are in general different. In order to account for the non-linear propagation of the
coordinates, the extrapolation can be generalized as follow,

χinit

(i+1) = χscf
i +

N∑
n=0

cn
(
χscf

(i−n) − χ
scf

(i−(n+1))

)
(18)
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where the N + 1 coefficients {cn} are chosen by minimizing the norm,∥∥∥∥∥(ri − ri+1) +
N∑
n=0

cn
(
r(i−n) − r(i−(n+1))

)∥∥∥∥∥ . (19)

This insures that the extrapolated degrees of freedom are in close correspondence
to the BOMD trajectory.

Generalized multi-dimensional linear extrapolation :
The multi-dimensional extrapolation of NGWFs can be further generalized in order
to account for the local characteristics of the ionic trajectories. By introducing a
localization function F (r− rcut) within Eq.19, the coefficients {cn} can be further
optimized with respect to the local environment. In practice, a set of coefficients
{cn}α is derived for each ion (α) by minimizing the modified norm,∥∥∥∥∥(r′(α)i − r′(α)(i+1)

)
+

m∑
n=0

c(α)n
(
r′(α)(i−n) − r′(α)(i−(n+1))

)∥∥∥∥∥ , (20)

where r′(α)i refers to a local projection of the ionic coordinates at time ti,

r′(α)β,i = F (rα,i − rβ,i − rcut) rβ,i (21)

This way, the extrapolated NGWFs associated with a given ion are in better cor-
respondence to the BOMD trajectory of its local environment.

One-dimensional polynomial extrapolation :
Another way to extrapolate the density kernel and NGWFs is to assume that each
element of the density kernel (Kαβ) and component of the NGWFs on the grid
(φα(x)) can be represented as a polynomial in the time t. Applied to the density
kernel, this gives,

Kαβ(t) =
N∑
m=0

cαβm tm (22)

where the N + 1 extrapolation coefficients cαβm are dertemined by fitting the poly-
nomial expression to the last N + 1 values of Kαβ.

3.2 Density kernel transformations

The extrapolation schemes, as described above, illustrates a point of view in which the
density kernel and the support functions are considered on the same footing, either
as a functional of the ionic coordinates or as an oscillatory function in time. This
is ignoring the close link between the support functions and the density kernel (see
Eq.3.2). There is a broader point of view, where the density kernel (Kαβ) is considered
as the representation of the density operator in the time-dependent basis formed by the
NGWFs. If one assume that the BOMD propagation of the electronic degrees of freedom
is more or less adiabatic, it is tempting to rely on the schemes described above for the
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extrapolation of the support functions and to transform the latest density kernel in order
to account for the modification of the basis set. In ONETEP, this can be done in two
ways.

Projection of the density kernel :
The simplest attempt at transforming the density kernel in order to adapt it to
the new support functions is to project the density kernel onto the extrapolated
NGWFs. This transformation reads,

Kinit

(i+1) =
(
Sinit
i+1

)−1
T(i+1),i Kscf

i Ti,(i+1)

(
Sinit
i+1

)−1
, (23)

where Ki and Si stand for the density kernel and overlap matrix at MD step i;
and Ti,(i+1) is the overlap between the NGWFs at MD step i and the extrapolated
NGWFs at step (i+ 1).

Christoffel correction to the density kernel :
While projecting the density kernel onto the extrapolated support functions is ap-
pealing because of its conceptual simplicity, it does not fully account for the tenso-
rial character of the density operator. As the support functions are extrapolated,
the metric of the representation manifold changes giving rise to non-vanishing
Christoffel symbols. In order to preserve tensorial integrity and idempotency to
first order, contributions from the Christoffel symbols should be accounted for in
the transformation of the density kernel. The correction to the density kernel then
reads,

∆Kinit

(i+1) = − (Sscf
i )
−1

D(i+1),i Ki −Ki Di,(i+1) (Sscf
i )
−1

(24)

with (
D(i+1),i

)
αβ

=

〈
(φinit

(i+1))α − (φscf
i )α

∣∣∣∣ (φscf
i )β

〉
. (25)

3.3 Extended Lagrangian propagation of density kernel schemes

Extended Lagrangian näıve approach :
The number of SCF iterations needed to reach a given threshold at each step of
the BOMD calculation can be significantly reduced by the extrapolation schemes
presented in sections 3.1 and 3.2. However, those methods come with a caveat
that has to be kept in mind. While, with a perfect SCF optimization, the SCF
ground-state electronic structure is independent from the initial guess, in practice,
self-consistence is only achieve up to a given threshold. The consequence of this
incomplete convergence is that the extrapolation schemes introduce a memory
effect in the simulation and break the time-reversibility of the BOMD algorithm.
As a consequence, the resulting trajectories suffers from systematic error and a
significant energy drift may appear on time scales of a few picoseconds. A simple
way to restore energy conservation is to impose tighter SCF convergence thresholds.
However, this may results in a considerable increase of the computational cost.
Another solution has been proposed by Niklasson et al. (see Ref.[12]). This scheme

12



restores the time-reversibility of BOMD by extending the BO Lagrangian with
auxilliary degrees of freedom directly associated with χ0, the initial guess of the
electronic degrees of freedom. The user is referred to Refs.[12, 13] for a complete
introduction to this formalism.

Extended Lagrangian with dissipation, dEL/SCF :
A more stable propagation scheme for the density kernel has also been proposed
by Niklasson [13]. In this scheme, the numerical errors arising from an incom-
plete convergence are averaged out via a dissipative term in the extended BO
Lagrangian. Following Bowler[15], we propagate the orthogonal representation P
of the auxiliary density kernel, i.e. P has the sparsity pattern of KS rather than of
K, to avoid the extra intricacies of propagating tensors in a space with non-unitary
metric. The dissipative term is defined in terms of a linear combination of previous
density kernels, which using the symplectic Verlet algorithm, yields the following
equation of motion

Pi+1 = 2Pi −Pi−1 + κ[(KSscf)i −Pi]

+α
M∑
m=0

cmPi−m. (26)

where κ, α and cm’s are optimized coefficients obtained from Ref. [13]. The initial
guess for the density kernel is given by

Kinit
i+1 = sym(PS−1

i+1) =
1

2
[(PS−1)i+1 + (S−1P)i+1] (27)

The problem with the above mentioned scheme lays in the use of a dissipative
term that unavoidably breaks the time-reversibility, which in turn will generate,
over long simulation time, a drift in the energy. However, for simulation time
accessible at the moment in AIMD, this issue is of little concern.

Extended Lagrangian with thermostat, inertial iEL/SCF :
Recently, a similar scheme that overcomes the issue of the time breaking symme-
try has been proposed [16]. The idea is to control the dynamics of the auxiliary
degrees of freedom through a thermostat. One of the simplest yet efficient ther-
mostats around is the Berendsen thermostat. Here, we also propagate the orthogo-
nal representation of the auxiliary density kernel for the same reasons listed in the
previous section. The equation of motion for the auxiliary density kernel, using a
velocity-Verlet integrator, reads

Pi+1 = Pi + Ṗi∆t+ ω2∆t2[(KS)scfi −Pi] (28)

Ṗi+1 = γi
˙̃
Pi+1

= γi{Ṗi + ω2∆t/2[((KS)scfi+1 −Pi+1) +

((KS)scfi −Pi)]} (29)
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with γi given by

γi =

√√√√√1 +
τ

∆t

 TK〈
Ṗi

2
〉 − 1

 (30)

where TK is the target temperature, τ is the characteristic time of the thermostat,

and
〈
Ṗi

2
〉

is the instantaneous temperature of the auxiliary degrees of freedom.

The key parameter is the target temperature and much care must be done in
assigning a value for it.

Extrapolation and propagation of NGWFs

The main input parameters that determine the extrapolation and propaga-
tion of NGWFs are mix ngwfs type and mix ngwfs num. The localization
function F (r−rcut) used in the generalized version of the multi-dimensional
linear extrapolation (see Eq. 21.) is characterized by the input parameters
mix local length and mix local smear.

mix ngwfs type (String) (default = none)
none : No use of MD history. Initial NGWFs are built accord-

ing to species atomic set block.
reuse : No mixing of NGWFs. NGWFs at previous MD step

are used as initial guess.
linear : One dimensional linear extrapolation from NGWFs at

two previous MD steps (see Eq.17).
multid : Multi-dimensional linear extrapolation from NGWFs at

previous MD steps (see Eqs. 18 and 19). The dimen-
sion of the extrapolation space is determined by input
parameter mix ngwfs num.

poly : One-dimensional polynomial extrapolation from NG-
WFs at previous steps (see Eqs. 20). The degree of
the extrapolation polynom is determined by input pa-
rameter mix ngwfs num.

local : Generalized multi-dimensional linear extrapolation
from NGWFs at previous steps (see Eqs. 20). The di-
mension of the extrapolation space is determined by in-
put parameter mix ngwfs num. The localization radius
is determine by input parameter mix local length.
Optionnally, the localization radius can be smeared out
by using non-zero values for mix local smear
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trprop : Time-reversible propagation of auxiliary NGWFs. See
section 3.3 and references therin.

mix ngwfs num (Integer) (default depends on mix ngwfs type)
Number of previous MD steps required to build the initial guess
for the density kernel.

mix loc length (Physical) (default = 10.0 bohr)
Cutoff radius of the localization function F (r− rcut) see Eq. 21.

mix loc smear (Physical) (default = 5.0 bohr)
When mix loc smear is non-vanishing, the localization function
F (r−rcut) is assumed to be Fermi-Dirac like with a characteristic
smearing of mix loc smear.

Extrapolation and transformation of density kernel

The main input parameters that determine the extrapolation, transforma-
tion and propagation schemes for the density kernel and NGWFs are re-
spectively mix dkn type and mix dkn num.

mix dkn type (String) (default = none)
none : No use of MD history. Initial density kernel is built

according to coreham denskern guess parameter.
reuse : No kernel mixing. SCF density kernel at previous MD

step is used as initial guess.
linear : One dimensional linear extrapolation from density ker-

nel at two previous MD steps (see Eq.17).
multid : Multi-dimensional linear extrapolation from density

kernel at previous MD steps (see Eqs. 18 and 19). The
dimension of the extrapolation space is determined by
mix dkn num.

poly : One-dimensional polynomial extrapolation from den-
sity kernel at previous steps (see Eqs. 20). The de-
gree of the extrapolation polynom is determined by
mix dkn num.
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proj : Projection of the previous SCF density kernel onto
the set of extrapolated NGWFs. This option requires
mix ngwfs type 6= none.

tensor : Correction of the previous SCF density kernel in or-
der to preserve tensorial integrity. This option requires
mix ngwfs type 6= none.

trprop : Näıve time-reversible propagation of auxiliary density
kernel. See section 3.3 and references therin.

dissip : Dissipative propagation of auxiliary density kernel. See
section 3.3 and references therin. The number of previ-
ous MD steps used for the derivation of the dissipative
force is determined by mix dkn num.

berendsen : Thermostatted propagation of auxiliary density kernel
with Berendsen thermostat. See section 3.3 and refer-
ences therein. The target temperature for the thermo-
stat is set by md aux dkn t and the characteristic time
constant τ by md aux beren tc.

mix dkn num (Integer) (default depends on mix dkn type)
Number of previous MD steps required to build the initial guess
for the density kernel.

mix aux dkn t (Physical) (default = 1e-8)
Target temperature of the auxiliary degrees of freedom to use in
the the berendsen propagation of the density kernel.

mix aux beren tc (Physical) (default = 0.1 ps)
Characteristic time constant for the Berendsen thermostat to
use in the berendsen propagation of the density kernel.

Additional notes on extrapolation and propagation

Most of the extrapolation and propagation schemes suffer from restricted
stability under incomplete SCF convergence. Depending on the convergence
parameters, significant discrepancies between the MD trajectories and the
Born-Oppenheimer surface may arise during the first few MD iterations.
In this case, it is recommended not to use the extrapolation and prop-
agation schemes until a good level of SCF convergence is reached. The
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input parameters mix ngwfs init type and mix ngwfs init num allows to
set up a smooth initialization phase. It is also possible to have a differ-
ent (usually tighter) thresholds during this initialization phase. In fact,
the usual lnv threshold orig and ngwf threshold orig are used to set
the LNV and NGWFs gradient thresholds during the intialization phase,
while the two keywords md lnv threshold and md ngwf threshold deter-
mine the LNV threshold and NGWFs gradient threshold for the remaining
MD calculation.

It is also possible to periodically reset the MD history using
mix ngwfs reset, mix dkn reset and md reset history, although this is
not recommended if one wants to avoid jumps into the energy profile, i.e.
avoid discontinuities in energy plots.

md reset history (Integer) (default = 100)
Every n MD steps, new initial guesses for the electronic degrees
of freedom are built according to coreham denskern guess and
species atomic set.

mix ngwfs reset (Integer) (default = 50)
Every n MD steps, the NGWFs mixing/extrapolation scheme is
reset and a new initial guess for the NGWFs is built according
to species atomic set.

mix dkn reset (Integer) (default = 50)
Every n MD steps, the density kernel mixing/extrapolation
scheme is reset and a new initial guess for the kernel is built
according to coreham denskern guess.

mix ngwfs init num (Integer) (default = 0)
Length of the initialization phase. Number of MD steps be-
fore the activation of the extrapolation/propagation scheme for
building NGWFs initial guesses.

mix ngwfs init type (String) (default = none)
none : During the initialization phase, initial NGWFs are built

according to species atomic set block.
reuse : During the initialization phase, NGWFs at last MD

step is used as initial guess.
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mix dkn init num (Integer) (default = 0)
Length of the initialization phase. Number of MD steps be-
fore the activation of the extrapolation/propagation scheme for
building density kernel initial guesses.

mix dkn init type (String) (default = none)
none : During the initialization phase, initial density kernels

are built according to coreham denskern guess.
reuse : During the initialization phase, density kernel at last

MD step is used as initial guess.

md lnv threshold (Double) (default = lnv threshold orig)
LNV threshold for the MD calculation. This can be set to be dif-
ferent from the initial LNV threshold lnv threshold orig of the
first n steps (set by mix ngwfs init num/mix dkn init num).

md ngwf threshold (Double) (default = ngwf threshold orig)
NGWFs gradient threshold for the MD calculation. This
can be set to be different from the initial NGWFs gradient
threshold ngwf threshold orig of the first n steps (set by
mix ngwfs init num/mix dkn init num).

Additional notes on restart when using a propaga-
tion scheme

If a “history” of NGWFs/density kernels is generated during a MD calcu-
lation it can be periodically saved into external files through the keyword
md write history. More precisely, when using md write history = T all
the information about the dynamical state (positions, velocities and accel-
erations), the thermostat state, and the propagation scheme is saved to
external files as well. To restart a MD calculation by reading in the history
from the last save the md global restart keyword must be set to true in
the restart input file. On a restart, one can either use the thermostat state
stored in rootname.thermo.global.restart or start with a new thermo-
stat block. This is achieved by setting the md restart thermo keyword.
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md write history (Integer) (default = -1)
Every n MD steps the history of auxiliary density kernels is writ-
ten into external files rootname.history.dkn#.scf/init/vel

(one of each kind for any element in the his-
tory). The info on the dynamical state, the ther-
mostat, the propagation scheme and the composition
method are saved into rootname.md.global.restart,
rootname.md.thermo.restart, rootname.history.info

and rootname.history.var respectively.

md global restart (Logical) (default = false)
MD global restart. This allows to restart a calculation by reading
in a history of density kernels if present. md restart is set to
false.

md restart thermo (Logical) (default = true)
Read thermostat info from file. If set to false, the thermostat is
set according to the thermostat block in the input file.

WARNING: Restarting a calculation with md global restart = T

comes with a caveat: depending on the value of md write history the
last batch of NGWFs/density kernels saved to files may not correspond
to the NGWFs/density kernels history of the last MD step completed.
However, the calculation restarts using the information stored in the
rootname.history.info and rootname.history.var. As a result, there
might be duplicated entries in the rootname.md file which has to be deleted
manually by the user.

For example, let’s consider the following scenario

MD NUM ITER : 124
MD WRITE HISTORY : 10

where we save a history of density kernels every 10 MD steps and the
simulation stops after 124 steps. The last batch of density kernels (to-
gether with all the other MD info) is saved at step 120, but the sum-
mary of the trajectory from step 121-124 is still appended to rootname.md.
When restarting with md global restart = T, the code reads in the files
rootname.history.info and rootname.history.var containing the info
corresponding to step 120 and starts to append the trajectory info to
rootname.md. As a result, the summary of the trajectory from step 121-124
in the rootname.md is duplicated.
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