Energy Decomposition Analysis (EDA) in ONETEP

Max Phipps

School of Chemistry, University of Southampton

May 2016

Introduction

Energy decomposition analysis (EDA) decomposes the interaction energy (ΔE) of an arbitrary number of non-bonded fragments into its chemical components [1]. In the case of the ONETEP EDA [2], based on the ALMO [3] and LMO [4] EDA approaches, these components are combined into a frozen density component ($\Delta E_{\rm FRZ}$) term, polarisation ($\Delta E_{\rm POL}$), and charge transfer ($\Delta E_{\rm CT}$) (as per the original ALMO EDA), as,

$$\Delta E = \Delta E_{\rm FRZ} + \Delta E_{\rm POL} + \Delta E_{\rm CT} \quad . \tag{1}$$

The frozen density component, representing the interaction of the frozen densities of the fragments and subsequent antisymmetrization, is further decomposed into its electrostatics $(\Delta E_{\rm ES})$, exchange $(\Delta E_{\rm EX})$, correlation $(\Delta E_{\rm CORR})$, and Pauli repulsion $(\Delta E_{\rm REP})$ terms as,

$$\Delta E_{\rm FRZ} = \Delta E_{\rm ES} + \Delta E_{\rm EX} + \Delta E_{\rm CORR} + \Delta E_{\rm REP} \quad . \tag{2}$$

In the ONETEP implementation, the correlation term is further partitioned into its frozen ($\Delta E_{\text{FRZ-CORR}}$) and Pauli repulsion ($\Delta E_{\text{REP-CORR}}$) terms as,

$$\Delta E_{\rm CORR} = \Delta E_{\rm FRZ-CORR} + \Delta E_{\rm REP-CORR} \quad . \tag{3}$$

These terms may be recombined to obtain the full correlation energy term.

The total interaction energy is expressed in its decomposed form as,

$$\Delta E = \Delta E_{\rm ES} + \Delta E_{\rm EX} + \Delta E_{\rm CORR} + \Delta E_{\rm REP} + \Delta E_{\rm POL} + \Delta E_{\rm CT} \quad . \tag{4}$$

1 Performing EDA calculations in ONETEP

There are two approaches to performing energy decomposition analysis (EDA) calculations in ONETEP:

1. All-In-One (1S) This approach involves creating a single input file with all the necessary information to complete an EDA calculation (TASK EDA).

- Designed for smaller systems.
- 2. Three-Stage Fragment-to-Supermolecule (3S) This approach involves three stages. Firstly NGWF tightboxes and density kernels for the fragments are optimised and written to disk. Next the fragment states are superposed to the supermolecule to prepare the supermolecule data (TASK EDA_PREP). Finally the EDA calculation is ran using this supermolecule-prepared data (TASK EDA).
 - Designed for larger protein-ligand type EDA calculations.

Both approaches are equivalent and produce identical results. The choice of whether to use the 1S or 3S approach is usually determined by system size and parallelisation requirements (please see section 5.1). Further details of calculations using these two approaches and a list of the EDA-specific keywords and descriptions are provided below:

1.1 All-in-One

The all-in-one (1S) approach is the default EDA calculation configuration, and is ran by simply setting the TASK keyword to EDA. In addition to the standard input keywords and blocks, the EDA_IATM block is necessary to perform ONETEP EDA calculations. This block defines the fragment atoms (referenced to the atom definitions in POSITIONS_ABS), and the fragment charges. Atoms of the supermolecule are arranged in the POSITIONS_ABS) block by concatenation of the fragment atoms, using their nuclear coordinates found in the supermolecule. For example, if a supermolecule system comprising the fragments H_2O (atoms 1 to 3), OH^- (atoms 4 to 5), and Na^+ (atom 6) is defined in the POSITIONS_ABS block,

```
%block POSITIONS_ABS
```

0	17.16973430	19.79077059	17.26422010
Н	16.0000000	19.22196603	16.0000000
Н	18.57568311	18.64371289	17.26799954
0	21.16270452	17.46075058	18.04467287
Н	22.06598884	16.00000000	17.45886087
Na	20.73940810	20.59012052	20.33500884
%endblo	ck POSITIONS ABS	5	

then the fragment data necessary for the EDA calculation is input as,

```
%block EDA_IATM
 !N_at Charge
    3 +0
    2 -1
    1 +1
%endblock EDA_IATM
```

1.2 Three-Stage

The 3S EDA has been developed to work easily with EDA directory structures, with fragment calculations being performed in separate folders. These data directories are specified in the input file using the EDA_FRAG and EDA_SUPER blocks as will be discussed below. In our EDA calculation example of a supermolecule comprising three fragments provided below, the following directory structure is used:

./STAGE1/FRAG01/ ./STAGE1/FRAG02/ ./STAGE1/FRAG03/ } Fragment calculations ./STAGE2} Supermolecule preparation calculation ./STAGE3} Supermolecule EDA calculation

It is noted that the user is not limited to three fragments, and that the folder names given above are for example purposes only and any folder and input file names may be used.

In all three stages, it is necessary to ensure that the system parameters are kept at constant values. For example, it is unwise to modify the NGWF radii or box sizes between the calculation stages. It is also important to ensure atomic orderings in the input file are consistent, *i.e.* that the orderings of atoms within each of the fragments do not change between the different calculation stages.

Stage 1 The first stage simply involves the user writing converged fragment data to disk. For each fragment comprising the supermolecule, a separate input file is constructed with the following parameters set:

write_denskern T write_tightbox_ngwfs T TASK SINGLEPOINT

Running these calculations will result in fragment '.dkn' and '.tightbox_ngwfs' files being written to disk. In our example, the three fragment calculation are ran in the directories STAGE1/FRAG01/, STAGE1/FRAG02/, and STAGE1/FRAG03/ using the input filenames 'frag01.dat', 'frag02.dat', and 'frag03.dat' for the respective fragments 1, 2, and 3.

Stage 2 The input file for the second stage is prepared by including the parameters EDA_READ_FRAGS T and TASK EDA_PREP. Running ONETEP with this input file will result in the converged fragment data being loaded in and combined to produce the supermolecule complex data ('.eda', '.dkn' and '.tightbox_ngwfs' files) necessary for stage three. These fragment files' names are set via the EDA_FRAG block, e.g. for a three fragment system:

```
%block EDA_FRAG
frag1prefix
frag2prefix
frag3prefix
%endblock EDA_FRAG
```

where frag1prefix, frag2prefix and frag3prefix are the filename prefixes that will result in loading of the '.dkn' and '.tightbox_ngwfs' files for the three fragments that were converged in stage one. In our example, we assume the second stage calculation is performed in the directory STAGE2/ with the input filename 'stage2.dat'. In this case the block would appear in the input file as,

%block EDA_FRAG ../STAGE1/FRAG01/frag01 ../STAGE1/FRAG02/frag02 ../STAGE1/FRAG03/frag03 %endblock EDA_FRAG

Stage 3 The third stage is performed by including the parameters EDA_READ_SUPER T and TASK EDA in the input file. As described earlier for the 1S approach, it is necessary for the user to define the fragment atoms and charges using the EDA_IATM block. On running ONETEP with this input file, the '.dkn', '.tightbox_ngwfs' and '.eda' files for the supermolecule prepared from stage two will be loaded. These files' names are set via the EDA_SUPER block, e.g.

%block EDA_SUPER
supermoleculeprefix
%endblock EDA_SUPER

where **supermoleculeprefix** is the filename prefix that will result in loading of the 'supermoleculeprefix.dkn', 'supermoleculeprefix.tightbox_ngwfs', and 'supermoleculeprefix.eda' files. In our example, where the third stage calculation is performed in the directory STAGE3/ with the input filename 'stage3.dat', the block would appear as,

%block EDA_SUPER
 ../STAGE2/stage2
%endblock EDA_SUPER

1.3 List of Keywords

Keyword	Type	EDA calculation	Optional	Summary
EDA_IATM	Block	All	No	This block describes the num-
				ber of atoms in each fragment
				and the charge on this frag-
				ment.
EDA_DELTADENS	Logical	All	Yes	Whether to run an electron
				density difference (EDD) visu-
				alisation calculation. (Default
				value: false).
EDA_FRAG_ISOL_POL	Logical	All	Yes	Whether to calculate
				fragment-specific contri-
				butions to the polarisation
				energy component. (Default
				value: false).
EDA_FRAG_ISOL_CT	Logical	All	Yes	Whether to calculate isolated
				fragment-pair delocalisations
				as part of the charge transfer
				calculation. This involves re-
				calculating the polarised state
				with every possible combina-
				tion of fragment pair com-
				bined into one. (Default
				value: false).
EDA_RESET_NGWFS_POL	Logical	All	Yes	Whether to reset the NGWFs
				to their initial states at the po-
				larisation EDA stage(s). (De-
				fault value: false)
EDA_RESET_NGWFS_CT	Logical	All	Yes	Whether to reset the NGWFs
				to their initial states at the
				charge transfer EDA stage.
				(Default value: true)
EDA_READ_FRAGS	Logical	s2	No	Whether to read in fragment
				'.dkn', '.tightbox_ngwfs' and
				eda' files for the super-
				molecule preparation stage
				of the calculation (TASK
	D1- 1		N.	EDA_PKEP).
EDA_FRAGS	Block	s2	NO	The fragment filename pre-
	T		N.	nxes to read in.
LDA_KEAD_SUPEK	Logical	50		whether to read in su-
				bey permolecule .dkn, .tight-
				for the supermelecule EDA
				colculation
FDA SUDED	Block		No	The supermolocule florer
	DIOCK	5		prefix to read in
FDA WRTTE	Logical		No	Whether to write continuation
LDA_WITTE	Logical	UG		data to disk
	Louical	<u></u>	No	Whether this calculation is a
TOY_CONTINUATION	LUgicai			continuation

Table 1: The EDA keywords. (s2 = stage two of the three-stage (3S) EDA, s3 = stage three of the three-stage (3S) EDA.)

2 Continuation

Continuation of supermolecule-stage EDA calculations (stage three of the 3S EDA) is controlled using the EDA_CONTINUATION keyword. Continuation files are written to disk within the current working directory when the value of the EDA_WRITE logical keyword is set to true, and continuation files are read by setting the EDA_CONTINUATION logical keyword to true.

It is recommended that the storage of continuation data should be kept separate to the TASK EDA_PREP task calculation data of stage two. This is achieved by performing the stage three calculation in a separate directory to the stage two calculation. This is because the EDA data produced from the TASK EDA_PREP calculation produces a reference to the frozen state which the NGWFs and density kernel will be reset to in a large proportion of EDA calculation cases.

3 EDA schematic

An example EDA calculation and directory structure is provided in Fig. 1.

4 Additional functionality

Further details of the EDA functionalities is given below:

4.1 Fragment-wise polarisations

Please note that the following functionality is developmental and is subject to change.

It is possible to obtain polarisation energies for each of the fragments by 'freezing' the electronic density during the SCF-MI optimisation. The number of additional polarisation calculations required to perform this is equal to the number of fragments in the system. This functionality is activated using the EDA_FRAG_ISOL_POL logical keyword. Also computed is a 'higher order' polarisation contribution that quantifies the difference between the individual fragment polarisation total and the full polarisation energy, i.e.

$$\Delta E_{\rm POL,HO} = \sum_{A \in \mathbf{X}}^{N_{\rm frag}} \Delta E_{\rm POL(A)} - \Delta E_{\rm POL}$$
(5)

where $\Delta E_{\text{POL,HO}}$ is the higher order polarisation contribution, N_{frag} is the number of fragments, $\Delta E_{\text{POL}(A)}$ is the polarisation energy for fragment A that constitutes the supermolecule X, and ΔE_{POL} is the polarisation energy on polarising all fragments simultaneously.

4.2 Fragment pair-wise delocalisations

Please note that the following functionality is developmental and is subject to change. This functionality is activated using the EDA_FRAG_ISOL_CT logical keyword.

Figure 1: An example 3S EDA calculation (data IO flows are represented by arrows).

It is possible to calculate fragment pair delocalisation energies by combining fragments within the SCF-MI optimisation. For example, if we consider a system of interacting $(H_2O)_3$, the delocalisation between any two water molecules is calculated by subtracting the SCF-MI energy of a combined $(H_2O)_2$ 'fragment' interacting with H_2O from the SCF-MI energy of the system with the $(H_2O)_2$ 'fragment' partitioned into its two H_2O constitutents.

4.3 Density visualisation

Obtaining electron density (ED) files for visualisation of the EDA frozen, polarisation and fully electronically relaxed states can be done using the WRITE_DENSITY_PLOT logical keyword. The output densities are identified by the '_ed_' filename string.

Filename String	Summary	
xxx_eda_frzidem_ed_density.cube	The ED of the frozen state.	
$xxx_eda_pol_iii_ed_density.cube$	The ED of fragment <i>iii</i> elec-	
	tronically polarised in the field	
	of all other fragments.	
xxx_eda_pol_ed_density.cube	The ED of the fully electroni-	
	cally polarised state.	
$xxx_eda_relaxed_ed_density.cube$	The ED of the fully electroni-	
	cally relaxed state.	

Table 2: The EDA electron density (ED) filename extension descriptions (filename root is denoted by xxx).

Visualisation of the density changes during the EDA polarisation and charge transfer processes via electron density difference (EDD) calculations are obtained using the EDA_DELTADENS logical keyword. The output densities are identified by the '_edd_' filename string.

Both ED and EDD functionalities are compatible with fragment-specific (see sections 4.2 and 4.2) EDA calculations. Note: electron density differences are currently not computable when the EDA_CONTINUATION keyword is set to true. In this case, the edd_cube utility may be used along with the ED cube files produced using the WRITE_DENSITY_PLOT logical keyword to calculate EDD files independently of ONETEP (see 'Additional utilities' section).

Filename String	Summary
xxx_pol_iii_edd_density.cube	The electronic polarisation
	EDD of fragment <i>iii</i> in the
	field of all other fragments.
xxx_eda_pol_higher_order_edd_density.cube	The higher order electronic
	polarisation EDD (of the
	individual fragment-polarised
	states to the fully polarised
	state).
xxx_eda_pol_edd_density.cube	The fully electronically po-
	larised EDD state.
xxx_eda_ct_edd_density.cube	The charge transfer EDD.

Table 3: The EDA electron density difference filename extension descriptions (filename root is denoted by xxx).

5 Parallelisation

5.1 Parallelisation requirements

The 1S calculation has a parallelisation strategy with restricted maximum possible number of MPI processes, $N_{\text{proc,max}}$,

$$N_{\text{proc,max}} = \min\left[N_{\text{at}}(\mathbf{A}), N_{\text{at}}(\mathbf{B})\right]$$
(6)

where A and B are fragments comprising a supermolecule AB. For example in the case of a water dimer $N_{\text{proc,max}} = 3$.

The 3S EDA allows the user to take full advantage of the parallelisation strategy during the supermolecule stage three, i.e.

$$N_{\text{proc,max}} = \min\left[N_{\text{at}}(\mathbf{A}), N_{\text{at}}(\mathbf{B})\right]|_{\mathbf{S}=1,2}$$

$$\tag{7}$$

$$N_{\rm proc,max} = N_{\rm at}(AB)|_{S=3} \tag{8}$$

where S is the stage number. For example in the case of a water dimer $N_{\text{proc,max}} = 6$ during the supermolecule stage three (S=3).

5.2 ScaLAPACK

The current EDA implementation requires explicit calculation and manipulation of the fragment MO eigenvectors. The ONETEP EDA implementation is compatible with the LAPACK[5] and ScaLAPACK[6] packages, and has been interfaced to the DSYGVX and PDSYGVX eigensolvers. Compilation with the ScaLAPACK solver is enabled at compilation time using the -DSCALAPACK flag. Use of this package provides significant speed-ups by parallelised computation of the eigenvectors required.

The threshold tolerance to which the eigenvectors are orthogonalised is specified by the eigensolver_abstol keyword. It has been observed that the eigensolver may require tighter than the default thresholds. This parameter can be modified in the input, e.g. eigensolver_abstol = 1.0E-12.

6 Additional utilities

utils/edd_cube.F90 This utility calculates the electron density difference between two '.cube' volumetric data files Usage: ./edd_cube cubein1 cubein2 cubeout, where n(cubeout) = n(cubein1) - n(cubein2)

References

- Maximillian J. S. Phipps, Thomas Fox, Christofer S. Tautermann, and Chris-Kriton Skylaris. Energy decomposition analysis approaches and their evaluation on prototypical protein-drug interaction patterns. *Chem. Soc. Rev.*, 44:3177–3211, 2015.
- [2] Maximillian J. S. Phipps, Thomas Fox, Christofer S. Tautermann, and Chris-Kriton Skylaris. Energy decomposition analysis based on absolutely localised molecular orbitals for large-scale density functional theory calculations in drug design. (Submitted), 2016.
- [3] R. Z. Khaliullin, E. A. Cobar, R. C. Lochan, A. T. Bell, and M. Head-Gordon. J. Phys. Chem. A, 111:8753–8765, 2007.
- [4] Peifeng Su and Hui Li. Energy decomposition analysis of covalent bonds and intermolecular interactions. J. Chem. Phys., 131(1):014102, 2009.
- [5] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. *LAPACK Users Guide*. Society for Industrial and Applied Mathematics, Philadelphia, PA, third edition, 1999.
- [6] L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. *ScaLA-PACK Users' Guide*. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997.