
Embedded mean-field theory in ONETEP

Robert J. Charlton and Joseph C.A. Prentice
Imperial College London

January 2019

1 Embedded Mean-Field Theory (EMFT)

Often in simulations of materials we wish to consider the impact of a host
environment on a system of interest, such as chromophores in solvent or
doped molecular crystals. While the interesting physics or chemistry may
be associated with the subsystem, the effects of the environment can be
significant and warrant description at the quantum level of theory. However,
the cost of applying accurate quantum methods such as hybrid functionals to
potentially large environments can be restricted by the cost of such methods.
Quantum embedding [1, 2] methods are intended to combine an accurate,
high-level description of the subsystem of interest (active) with a cheaper,
low-level method for the host environment.

Embedded mean field theory (EMFT) [3] is an approach to quantum
embedding based on the one-electron density matrix. To begin, we partition
the density matrix into subsystem components,

ρ =

(
ρAA ρAB

ρBA ρBB

)
, (1)

where A is the active region and B is the inactive environment. The total
energy can be written as

E [ρ] = tr [ρH0] +G [ρ] , (2)

where H0 contains the one-electron terms of the Hamiltonian and G [ρ] con-
tains all two-electron terms (local, Hartree and exchange-correlation effects).
In embedded mean-field theory (EMFT), the two-electron interaction for the
active subsystem A is constructed at a higher level of theory to the rest of
the system,

EEMFT [ρ] = tr [ρH0] +Glow [ρ] +
(
Ghigh [ρAA]−Glow [ρAA]

)
, (3)

where Glow and Ghigh are the two-electron interaction energies at the lower
and higher levels of theory, respectively. For example, the low level theory

1



could be LDA while the higher level uses a hybrid functional such as B3LYP.
We assume here that the core Hamiltonian H0 is the same at both levels of
theory, though this need not necessarily be the case. The ground state of
the embedded system can thus be obtained by minimising (3) with respect
to the elements of the density matrix.

1.1 Block orthogonalisation

Normalisation is maintained provided the trace of the density matrix with
the overlap matrix satisfies

Tr [ρS] = N. (4)

EMFT partitioning can result in unrealistic charge spillover from the low-
level to the high-level region, producing large negative results for the off-
diagonal terms Tr [ρABSBA] and Tr [ρBASAB]. One possible remedy is to
impose a block-orthogonalisation (BO) between the subsystem orbitals [4],

|φ̃Bi 〉 =
(

1− P̂A
)
|φBi 〉 , (5)

P̂A =
∑
j,k∈A

|φAj 〉
(
SAA

)-1
jk
〈φAk | . (6)

By construction Tr [ρABSBA] and Tr [ρBASAB] are strictly zero and all elec-
trons are associated with the diagonal blocks.

2 Implementation in ONETEP

Quantum embedding as implemented in ONETEP is based around EMFT.
Here we denote the active system NGWFs as |χA

i 〉 and the environment
NGWFs as |φBj 〉. The fundamental quantity of interest is the Hamiltonian,

HEMFT =

(
Hhigh

AA Hlow
AB

Hlow
BA Hlow

BB

)
, (7)

where the high- and low-level Hamiltonian operators are given as

Ĥhigh =T̂ + V̂local + V̂Hartree + V̂ high
XC , (8)

Ĥ low =T̂ + V̂local + V̂Hartree + V̂ low
XC . (9)

The total energy can thus be found by minimising the quantity

EEMFT = min
{Kαβ},{χα}

Tr
[
KHEMFT

]
, (10)

with respect to the NGWFs and elements of the density kernel K, using
the conventional methods available in ONETEP. The Hamiltonian is con-
structed as follows,

2



1. The total electron density n (r) is constructed from the full system
NGWFs and kernel, from which V low

XC (r) is calculated.

2. The active subsystem density nAA (r) is constructed using the subsys-

tem terms and the subsystem XC potentials V low,A
XC (r) and V high,A

XC (r)
calculated.

3. Final EMFT potential can be written as

V high
XC (r) = V low

XC (r) +
(
V high,A
XC (r)− V low,A

XC (r)
)
. (11)

with which we can construct the high-level Hamiltonian.

Although block orthogonalisation is found to work when just the density
kernel is being optimised, it does not do so generally for the optimisation
of the NGWFs. Because of this, there is an option to optimise the NGWFs
at the lower level of theory first (in all regions), and then fix them for an
optimisation of the kernel under EMFT.

If you would like to use hybrid functionals with embedding, there are two
things to bear in mind. Firstly, only hybrid-in-semi local DFT calculations
are currently supported – hybrid-in-hybrid calculations are not possible.
Secondly, the species in the species swri-[swri name] block must match
the species in the active region exactly. Anything else will give incorrect
results. Otherwise, the set-up of the hybrid functional calculation is identical
to a normal ONETEP calculation.

3 Keywords

• species ngwf regions (block): This block defines which species are
in which region. Each line of the block corresponds to a distinct region.
The species within each region do not necessarily have to be physically
next to one another. If this block is not defined, it is assumed that
there is only one region, containing all the species in the system.

• do fandt (logical): Controls whether a freeze-and-thaw (F+T) opti-
misation of the NGWFs is performed or not. This is a cruder form
of embedding, where all regions are treated at the same level of the-
ory, but each region’s NGWFs are optimised in turn, with the others
frozen. Default F.

• freeze switch steps (integer): How many NGWF CG optimisation
steps should be spent on each region before moving onto the next
in a F+T calculation. maxit ngwf cg represents the total number
of NGWF optimisation steps across all regions. A value less than
0 means that all NGWFs are optimised together i.e. no F+T takes
place. Default -1.

3



• use emft (logical): Controls whether an EMFT calculation is per-
formed, as described above. Default F.

• active region (integer): Defines which region is the active region –
1 means the species on the first line in the species ngwf regions

block constitute the active region, 2 means the second line, and so on.
Default 1.

• active xc functional (string): Defines what functional is used as the
higher level of theory within EMFT. Default is the value of xc functional

i.e. no difference between the regions.

• freeze envir ngwfs (logical): Controls whether the environment NG-
WFs should ever be optimised or not. Default F.

• use emft follow (logical): Controls whether the EMFT calculation
is only performed after a regular calculation, so the NGWFs are opti-
mised at the lower level of theory first, before applying EMFT. Default
F.

• use emft lnv only (logical): Controls whether only the kernel is op-
timised within EMFT, with the NGWFs optimised at the lower level of
theory and then fixed. Usually used in conjunction with use emft follow.
Default F.

• emft lnv steps (integer): Controls the number of LNV kernel op-
timisation steps to be used in conjunction with use emft lnv only.
Default 10.

• block orthogonalise (logical): Controls whether the environment
NGWFs are orthogonalised with respect to the active region NGWFs,
as described above. Default F.

• parallel scheme (string): Defines the parallel scheme used for the
calculation. See Appendix for more information. Default NONE.

• read sub denskern (logical): Controls whether only diagonal blocks
of the density kernel are read in when restarting. This is useful for
starting an embedding calculation from two separate calculations on
the individual regions, so you only have the diagonal blocks of the
density kernel. Default F.

• embed debug (logical): Turns on verbose printing for debugging of
embedding functionalities. Default F.

The most reliable way to run EMFT calculations is to have use emft,
use emft follow, use emft lnv only and block orthogonalise all set to

4



T. These can be set to F (most sensibly in reverse order i.e. block orthogonalise

first), but the calculation may become more unstable, depending on the sys-
tem, the regions chosen and the functionals chosen.

4 Example input file

!====================================================!

! Input for calculation with the ONETEP program !

! !

! O2 and H2 form the embedded system to be treated !

! at the higher level of theory, O1 and H1 are the !

! environment treated at the low-level. !

!====================================================!

%block species_ngwf_regions

O2 H2

O1 H1

%endblock species_ngwf_regions

task: SINGLEPOINT

cutoff_energy 1000 eV

write_forces: T

xc_functional: LDA

active_xc_functional: PBE

use_emft: T

use_emft_follow: T

use_emft_lnv_only: T

block_orthogonalise : T

parallel_scheme: HOUSE

%block species_atomic_set

H1 "SOLVE"

O1 "SOLVE"

H2 "SOLVE"

O2 "SOLVE"

%endblock species_atomic_set

%block species

H1 H 1 1 7.0

O1 O 8 4 7.0

H2 H 1 1 7.0

O2 O 8 4 7.0

5



%endblock species

%block species_pot

H1 "pseudo/hydrogen.recpot"

O1 "pseudo/oxygen.recpot"

H2 "pseudo/hydrogen.recpot"

O2 "pseudo/oxygen.recpot"

%endblock species_pot

%block lattice_cart

30.000000000 0.000000000 0.000000000

0.000000000 30.000000000 0.000000000

0.000000000 0.000000000 30.000000000

%endblock lattice_cart

%block positions_abs

O1 16.203224001 15.100000000 11.536063353

H1 15.100000000 15.100000000 10.100000000

H1 15.100000000 15.100000000 12.991451046

O2 12.600158789 15.100000000 17.306583960

H2 13.051873252 13.656398529 18.308114239

H2 13.051873252 16.543601471 18.308114239

%endblock positions_abs

5 Interaction with other functionalities

5.1 Fully tested

• Energy and forces calculations

• Hybrid-in-semi local DFT

• Restarting calculations

5.2 Should work, not thoroughly tested

• Geometry optimisation

• Finite displacement phonons

• Molecular dynamics

• Conduction NGWF optimisation

• LR-TDDFT

• Ensemble DFT

6



• Kernel DIIS

• Implicit solvent

• QNTO

• NAO

• Cutoff Coulomb

• Spin polarised calculations

• Some properties calculations (eigenstates, Mulliken charges, plotting,
DoS)

5.3 Not compatible with embedding

• Hubbard calculations

• DMFT

• PAW

• cDFT

• Bandstructure calculations

• DMA

• EDA

• Electronic transport

• Hybrid-in-hybrid DFT

• NEB

• EELS

• Polarisable embedding

• Transition state searching

• DDEC

Any functionalities missed above are likely to not work with embedding.

7



6 Appendix: Parallel strategies with embedding

In a normal ONETEP calculation, atoms are distributed across the avail-
able MPI processes according to a ‘parallel strategy’. This determines how
resources such as matrix elements will be spread across the MPI environ-
ment in order to reduce the communication between nodes and maximise
the efficiency of the calculation. Details on maximising parallel efficiency
are available via the ONETEP documentation and website.

As part of the embedding infrastructure, each subsystem is given its own
parallel strategy. This contains all information relating to the distribution
of resources across the MPI nodes available to the calculation, which are
determined by the parameter PARALLEL SCHEME. There are three settings
for the distribution of resources during an embedding calculation:

• NONE: All subsystems are treated completely independently, with atoms
distributed across all available processors as though the other subsys-
tems do not exist. The number of MPI processes cannot be greater
than the number of atoms in the smallest subsystem. For example,
if there are 8 processors available then each will hold atoms and data
from all subsystems, though the calculation will fail if any subsystem
has less than 8 atoms (or possibly slightly more if the space-filling
curve is in use). This is the default setting for testing but is not
recommended for practical calculations due to the constraint on the
number of processors.

• SENATE: Nodes are partitioned evenly between all subsystems. For
example, if there are 8 processors and 2 subsystems, then each will
be allocated 4 processors, regardless of the number of atoms in each
subsystem. Unlike the NONE setting, there is no upper bound on the
number of processors which may be used, so user discretion is advised.

• HOUSE: Divides the processors proportionally between all subsystems,
with a minimum of 1 processor per subsystem. For example, if we
have two subsystems consisting of 15 and 5 atoms each, then with 8
processors each subsystem will be allocated 6 and 2 nodes respectively.
At a minimum all subsystems are granted 1 processor — if we had two
subsystems with 1 and 100 atoms in our 8 processor example, then
they will receive 1 and 7 processor respectively. Like SENATE, there
is no upper bound on the number of processors that can be allocated
and finding a sensible setting is left to the user.

HOUSE is the recommended setting for running calculations, the others are
mainly of use for testing. Since they should all produce the same results, any
significant differences may be a sign of an underlying problem, so comparing
them is a useful consistency check.

8



References

[1] P. Huang and E. M. Carter, Annu. Rev. Phys. Chem., 59, 261–290,
(2008).

[2] A. S. P. Gomes and C. R. Jacob, Annu. Rep. Prog. Chem., Sect. C:
Phys. Chem., 108, 222–277, (2012).

[3] M. E. Fornace, J. Lee, M. Kaito, F. R. Manby, T. F. Miller, J. Chem.
Theory. Comput., 11, 568–580, (2015).

[4] F. Ding, F. R. Manby and T. F. Miller, J. Chem. Theory Comput., 13,
1605–1615, (2017).

9


