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DFT+U is fully and self-consistently implemented in ONETEP, together
with a number of advanced ancillary functionalities. The method is linear-
scaling with respect to system size, exhibiting no systematic tendency to
slow convergence to the ground-state. DFT+U in its conventional fixed-
projector form introduces only a small increase in computational pre-factor
with respect to the underlying exchange-correlation functional [1].
PLEASE NOTE: Seven columns are now required in the Hubbard
block in order to allow for +J calculations. Older input files with
six columns will not yield incorrect results, but the code will exit.

A very short introduction to DFT+U

DFT+U [2, 3, 4], also known as LDA+U or LSDA+U , is a method used
to improve the description of so-called strongly correlated materials offered
by DFT within conventional approximations for exchange-correlation (XC)
such as the LSDA and σ-GGA, quantitatively and even qualitatively. These
functionals, based on the locally-evaluated density and its gradients, can
sometimes fail to reproduce the physics associated with localised orbitals of
3d and 4f character characteristic of conventionally-classed strongly corre-
lated materials, a category consisting of not only first-row transition metals
and their oxides, but also lanthanoid oxide materials, and other materials
such as certain magnetic semiconductors and organometallic molecules.

Typically, the LDA and its extensions underestimate local magnetic mo-
ments and the tendency to favour high-spin ground-states in such materials,
and the insulating gap in cases where it is related to electron localisation.
Underestimation of the gap due to the absence, in the LDA, of the derivative
discontinuity with respect to orbital occupancy in the exact XC-funtional
may be confounded by an underestimation of the exchange splitting induced
by local magnetic moments.

The DFT+U correction term is usually thought of as an explicit mean-
field treatment of the exchange-correlation energy contributed by the corre-
lated sites (subspaces projected out with functions of 3d and or 4f character)

i



within the Hubbard model, including a double-counting correction for that
contribution already included in the LDA term. The flavour implemented
in ONETEP is the basis-set independent, rotationally invariant quadratic
penalty functional of Ref [5], defined by the additive energy correction

EDFT+U
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Here, U is an estimate of the scalar screened density-density Coulomb re-
pulsion between localised orbitals. The occupancy matrix of the correlated
site I, for spin channel σ, is defined, in the case of orthonormal projector

functions {|ϕ(I)
m 〉}, and density-matrix ρ̂(σ), by

n
(I)(σ)
mm′ = 〈ϕ(I)

m |ρ̂(σ)|ϕ
(σ)
m′ 〉. (1.2)

Put simply, if the system under study comprises open 3d or 4f sub-shells,
then there is a good chance that the LDA will find a minimum energy by
partly occupying and leaving degenerate the Kohn-Sham orbitals strongly
overlapping with these states, rather than splitting them into occupied and
virtual Hubbard bands. This leads to an underestimation of the insulating
gap and any associated magnetic order. In this case, the DFT+U method
can be used to penalise the non-integer occupancy of these orbitals, tending
to fill states with occupancy greater than 0.5 and empty states with occu-
pancy less than 0.5, as can be seen from the expression for the DFT+U
potential
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The DFT+U term may be considered as a correction which cancels the
contribution to the energy arising due to the spurious self-interaction of a
partially occupied orbital [5]. In this case, the U parameter is the curvature
of the total energy with respect to the occupancy of the correlated manifold -
which should be a piece-wise linear curve were Janak’s theorem satisfied [6] –
which can be computed using linear-response theory (among other methods
such as constrained DFT) according to the prescription given in Refs. [5, 7].

How to activate DFT+U in ONETEP

In order to activate the DFT+U functionality, the hubbard block is added
to the input file. For example, in the case of a system containing iron and
cerium atoms incorrectly described by the exchange-correlation functional,
which we suspect could benefit from the DFT+U correction to improve the
description of localisation, we might use the hubbard block:
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!! species1 l 2 U(eV)3 J(eV)4 Z5 α(eV)6 σ(eV)7

% block hubbard
Fe1 2 4.0 0.0 -10.0 0.00 1.0
Fe2 2 4.0 0.0 -10.0 0.00 -1.0
Ce1 3 6.0 0.0 -10.0 0.5 0.0

% endblock hubbard

The columns of the hubbard block are described as follows:

1. The species label, e.g. Fe1 for iron atoms of a first type in the cell,
Fe2 for iron atoms of a second kind, etc. Only the species to which
orbitals to be corrected by DFT+U are assigned should be listed in
this block.

2. The angular momentum channel of the projectors used to delineate
the strongly correlated sites on Hubbard atoms this type, e.g. l = 2
for Fe1. Conventionally, the radial quantum number r = l+ 1 is used
to generate atom-centred atomic projectors, so that l = 2 gives 3d
orbitals, l = 3 gives 4f orbitals etc. (please get in contact if you need
to use a r 6= l + 1 combination, or multiple sub-shells per atom).

3. The value of the Hubbard U for this sub-shell, in electron-volts. Most
users will simply work with the value for U that they find corrects the
band-gap or bond-lengths in the system they wish to study. Methods
do, however, exist to estimate its value, for example the linear-response
technique [5, 7], which is implemented in ONETEP.

4. The value of the Hund’s exchange J for this sub-shell, in electron-
volts. The rotationally invariant exchange corrective term described
in detail in Ref. [8] is fully implemented in ONETEP (including forces
etc), and activated for any J 6= 0.

5. This number Z selects how the radial part of the projector functions
used to describe the 1s, 2p, 3d or 4f atomic orbitals entering the
DFT+U functional are defined. In the case that Z < 0, a subset of
the orbitals generated by solving the atomic problem subject to the
pseudopotential for the species in question are chosen (in which case
the projectors form a subset of the initial guesses for the ONETEP
NGWFs); here the magnitude of the negative Z makes no difference.
In the case that Z > 0, for more advanced users, this number is the ef-
fective charge divided by the ratio of effective masses used to generate
projectors in the form of solutions to the hydrogenic Schrödinger equa-
tion. A good guess for this number might be the Clementi-Raimondi
effective charge, tabulated in Refs. [9, 10], and the choice of radial
profile does matter [11]. In both cases, the projectors are effectively
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renormalised within an atom-centred sphere with the same radius as
the NGWFs on that atom.

6. An additional potential acting on the subspace in question, the pref-
actor α is here entered in electron-volts. This is needed, for example,
in order to locally vary the potential in order to determine the value
of U which is consistent with the screened response in the system with
linear-response theory [5, 7], or to break a spatial symmetry, such as
in a mixed-valence system. In the example given, we are additionally
penalising the occupancy on cerium 4f atomic orbitals.

7. The spin-splitting factor, in electron-volts, which is deducted from the
α factor for the spin-up channel and added to α for the spin-down
channel. In the example shown here we’re promoting spin-up mag-
netisation for iron atoms Fe1, and spin-down for Fe2. This can be
very useful for appropriately breaking magnetic symmetries in antifer-
romagnetic solids or open-shell singlet molecules, or for estimating the
magnetic susceptibility or exchange coupling.

N.B. Users may find the DFT+U functionality useful in cases of sys-
tems even when the DFT+U correction is not needed (setting the all
U parameters to zero does not disable the functionality). The imple-
mentation offers a very inexpensive method for carrying out carefully-
defined atom-centred atomic population analysis, or breaking symme-
tries in spin or charge ordered systems.

Compatibility

The DFT+U functionality is fully compatible with almost all other parts
of the ONETEP code, such as listed below, since it simply involves an
additional term in the Hamiltonian and ionic forces. Please get in touch first
if you would like to use a more exotic combination of these functionalities:

1. Total-energy minimisation and ionic forces

2. Geometry optimisation, molecular dynamics and phonon calculations

3. All other functionals including hybrids and Van der Waals functionals

4. Implicit solvation

5. The PAW formalism and ultrasoft pseudopotentials

6. Constrained DFT

7. Local density of states (including a correlated subspace decomposition)

8. Natural bond orbital calculations
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9. Conduction-band optimisation and Fermi’s Golden Rule spectra

10. Calculations of changes in electric polarisation

11. Time-dependent DFT

12. Electronic transmission calculations

The extension of the DFT+U implementation to cluster Dynamical
mean-field theory has also been implemented in ONETEP; for an exam-
ple of its capabilities see Ref. [12].

Using NGWFs and projector self-consistency

Any reasonable set of localised atomic-like functions may, in principle, be
used for the projectors defining the correlated subspaces in DFT+U ; the
choice is somewhat arbitrary and the description “atomic orbitals” does not
uniquely define them. One possible approach is to use Wannier functions for
the Kohn-Sham orbitals, so that the correlated subspaces are proper sub-
spaces of the Kohn-Sham Hilbert space. Indeed, there is numerical evidence
to suggest that Maximally Localised Wannier Functions (MLWFs) [13, 14],
in particular, provide a basis that maximises a particular measure of the on-
site Coulomb repulsion [15], and MLWFs are in common use as a minimal
basis with which to construct tight-binding models from first-principles.

In ONETEP, a set of variationally-optimised nonorthogonal generalised
Wannier functions (NGWFs) are generated as a by-product of total-energy
minimisation. NGWFs exhibit some similar properties to MLWFs and other
flavours of localised Wannier functions, and, for example, can be used to
calculate finite-difference response properties in a similar way [16]. As they
are conveniently available in ONETEP, we have made it possible to re-use
the NGWFs from the end of a ground-state calculation as a set of Hub-
bard projectors with which to define the DFT+U correction. For this, it
was necessary to develop a tensorially-consistent formulation of DFT+U
in order to accommodate nonorthogonal projector functions [17]; projector
nonorthogonality for a given subspace is automatically compensated for.

In order to ensure that NGWFs with appropriate symmetry are cho-
sen as Hubbard projectors for a given atom, those n NGWFs |φα〉 that
maximise

∑n
m,α〈ϕm|φα〉〈φα|ϕm〉, for a given set of n hydrogenic orbitals

|ϕm〉, defined in the hubbard block, are selected for the task. The keyword
hubbard max iter, (defaulting to 0), sets the task to HUBBARDSCF,
which performs a self-consistency cycle over the Hubbard projectors, demon-
strated in Refs. [11, 17]. The density from one minimisation is re-used at the
beginning of the next, and setting hubbard max iter to 2 one can carry
out a DFT+U calculation using the LDA NGWFs as projectors.
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The keywords hubbard energy tol, hubbard conv win, and hub-
bard proj mixing are used to manage the Hubbard projector self-consistency
cycle. For convergence, the ground state energy must deviate less than hub-
bard energy tol (defaulting to 10−8Ha) from one HUBBARDSCF it-
eration to the next, over hubbard conv win (defaulting to 2) iterations.
A fraction hubbard proj mixing (defaulting to 0.0) of the previous Hub-
bard projectors may be mixed with the new ones in order to accelerate the
procedure, although this has never been found to be necessary. Setting hub-
bard proj mixing to a negative value causes the projectors to be read in
from a .tightbox hub projs file, for restarting a HUBBARDSCF cal-
culation or for a variety of post-processing tasks.
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