
GPU Accelerated Implementation of ONETEP

Karl A. Wilkinson∗

February 11, 2016

1 Introduction

An OpenACC implementation of ONETEP is available to allow execution on machines containing graph-
ical processing units based accelerators (GPUs). GPUs are highly parallel and are well suited to algo-
rithms such as the fast fourier transforms (FFTs) within ONETEP during the calculation of properties
such as the local potential integrals and the charge density.

However, the connection of the accelerators to the host machine through the peripheral component
interconnect express (PCIe) bus introduces a bottleneck when large amounts of data are transferred.
Currently, this is an issue when moving the fine grid FFT boxes from the accelerator to the host machine
but future generations of hardware, and developments within ONETEP are expected to reduce this issue
and improve performance significantly.

This work has been published in the Journal of Computational Chemistry. More detailed information
is available in this publication: http://onlinelibrary.wiley.com/doi/10.1002/jcc.23410/abstract However,
significant performance improvements have achieved since the publication of this article. It should be
noted that this feature of the ONETEP package is under development.

2 Compilation

Compilation of the OpenACC implementation of ONETEP is only currently supported by the compilers
from the Portland Group International (PGI). Relatively few changes are required in order to perform
the compilation: The flag:

-DGPU_PGI

should be used and additional variable describing the flags and libraries need to be defined:

ACCFLAGS = -ta=nvidia -Mcuda=6.5

ACCLIBS = -lcufft -lcudart

Here, we are utilising the CUDA 6.5 runtime libraries as they are the most up to date version available
on the TITAN supercomputer at the Oak Ridge National laboratories, your local machine may have a
more up to data version available.

Further examples of complete config files for the desktops at the University of Southampton and the
Wilkes cluster at the University of Cambridge follow:

################ Southampton desktop ################

F90 = pgf90

MPIROOT=/local/scratch/kaw2e11/software/openmpi_1.6.4/pgi/

FFTWROOT=/local/scratch/kaw2e11/software/fftw/pgi/

FFLAGS = -DGPU_PGI -DFFTW3 -DMPI -I$(MPIROOT)include -I$(FFTWROOT)include -I$(MPIROOT)lib/

OPTFLAGS = -O3 -fast

DEBUGFLAGS = -g -C

∗karl.wilkinson@uct.ac.za

1

MPILIBS= -L$(MPIROOT)lib/ -lmpi_f90 -lmpi_f77 -lmpi -lopen-rte -lopen-pal -ldl -Wl,

--export-dynamic -lnsl -lutil -ldl

ACCFLAGS = -ta=nvidia -Mcuda=6.5

ACCLIBS = -L/usr/lib64/nvidia -L$(CUDAROOT)/lib64/ -lcufft -lcudart

LIBS = $(MPILIBS) -llapack -lblas -L$(FFTWROOT)lib/ -lfftw3_omp -lfftw3 -lm

################ WILKES ################

FC := mpif90

F90 := $(FC)

FFLAGS = -DGPU_PGI -DFFTW3_NO_OMP -DMPI -DNOMPIIO -Mdalign

MKLPATH=${MKLROOT}/lib/intel64

LIBS= -L$(MKLROOT)/lib/intel64 -lmkl_intel_lp64 -lmkl_core -lmkl_sequential -lpthread -lm

OPTFLAGS = -O3 -m64

WARNINGFLAGS = -Wall -Wextra

DEBUGFLAGS =

COMPILER = PORTLAND-pgf90-on-LINUX

ACCFLAGS = -acc -ta=nvidia:cc35 -Mcuda=6.5

ACCLIBS = -lcufft -lcudart

Unfortunately, attention should be paid to to the version of the compilers and libraries
used as, due to the speed at which the OpenACC approach is evolving, it is a common for
functionality to break. As such, this document will be regularly updated with details of
combinations of compiler and library versions that are known to be stable.

3 Execution

Use of the OpenACC implementation of ONETEP does not require any changes to the ONETEP input
files. However, job submission does change significantly in some platforms.

3.1 CUDA Multi Process Service

The CUDA Multi Process Service (MPS) daemon controls the way MPI processes see GPUs and allows
multiple MPI processes to use a single GPU wherein the hyperqueue scheduler is used to utilise the
hardware much more efficiently than when a single process is used per GPU. As a single MPI process
does not provide sufficient computation to fully utilize a GPU, it is critical to use this technology to
achieve optimal performance.

However, attention must be paid to ensure that GPU memory is not exhausted. Currently, the usage
is reported but these safety checks need to be extended to allow a graceful exit should the total memory
be exhausted.

Below are examples for the usage of MPS during job submission on Wilkes and TITAN:

3.1.1 Wilkes

On Wilkes, job submission is performed using: sbatch slurm submit.tesla
where: slurm submit.tesla is:

#!/bin/bash

#SBATCH -J MPS_test

#SBATCH -A SKYLARIS-GPU

#SBATCH --nodes=1

#SBATCH --ntasks=4

#SBATCH --time=00:30:00

#SBATCH --no-requeue

#SBATCH -p tesla

. /etc/profile.d/modules.sh

2

module purge

module load default-wilkes

module unload intel/impi intel/cce intel/fce cuda

module load pgi/14.7

module load mvapich2/2.0/pgi-14

ulimit -s unlimited

numnodes=$SLURM_JOB_NUM_NODES

numtasks=$SLURM_NTASKS

mpi_tasks_per_node=$(echo "$SLURM_TASKS_PER_NODE" | sed -e ’s/^\([0-9][0-9]*\).*$/\1/’)

JOBID=$SLURM_JOB_ID

cd $SLURM_SUBMIT_DIR

application="onetep.wilkes.gpu.cuda55"

echo "JobID: $JOBID"

echo "Time: ‘date‘"

echo "Running on master node: ‘hostname‘"

echo "Current directory: ‘pwd‘"

if ["$SLURM_JOB_NODELIST"]; then

#! Create a machine file:

export NODEFILE=‘generate_pbs_nodefile‘

cat $NODEFILE | uniq > machine.file.$JOBID

echo -e "\nNodes allocated:\n================"

echo ‘cat machine.file.$JOBID | sed -e ’s/\..*$//g’‘

fi

echo -e "\nnumtasks=$numtasks, numnodes=$numnodes, mpi_tasks_per_node=$mpi_tasks_per_node (OMP_NUM_THREADS=$OMP_NUM_THREADS)\n"

Start MPS deamons...

srun -N$SLURM_JOB_NUM_NODES -n$SLURM_JOB_NUM_NODES ./run_MPS.sh

echo -e "\nExecuting program:\n==================\n\n"

mpirun -np ${SLURM_NTASKS} -ppn ${mpi_tasks_per_node} --genvall -genv MV2_RAIL_SHARING_LARGE_MSG_THRESHOLD 1G -genv MV2_ENABLE_AFFINITY 1 -genv MV2_CPU_BINDING_LEVEL SOCKET -genv MV2_CPU_BINDING_POLICY SCATTER -genv MV2_SHOW_CPU_BINDING 1 ./run_app.sh ../${application} onetep.dat 2>&1 | tee onetep.out

echo -e "\n\n>>> Program terminated! <<<\n"

echo -e "Time: ‘date‘ \n\n"

Kill MPS deamons

srun -N$SLURM_JOB_NUM_NODES -n$SLURM_JOB_NUM_NODES ./kill_MPS.sh

This file, and the following files, were obtained from the Wilkes systems administrators. It is advisable
to contact system administrators if you have any questions regarding the submission process.

Here, the files: run MPS.sh and kill MPS.sh manage the initialisation and termination of the MPS
deamon and the run app.sh controls the allocation of MPI processes to the correct GPUs. For reference,
the contents of those files are as follows, again, it is advisable to speak with your systems administrator
about equivalent scripts for other machines (For example, run app.sh assumes the use of MVAPICH2).

#####run_MPS.sh

#!/bin/bash

Number of gpus with compute_capability 3.5 per server

3

NGPUS=2

Start the MPS server for each GPU

for ((i=0; i< $NGPUS; i++))

do

echo "[CUDA-PROXY] Setting MPS on ‘hostname‘ for GPU $i..."

mkdir /tmp/mps_$i

mkdir /tmp/mps_log_$i

export CUDA_VISIBLE_DEVICES=$i

export CUDA_MPS_PIPE_DIRECTORY=/tmp/mps_$i

export CUDA_MPS_LOG_DIRECTORY=/tmp/mps_log_$i

nvidia-cuda-mps-control -d

done

exit 0

###/run_app.sh

#!/bin/bash

Important note: it works properly when MV2_CPU_BINDING_LEVEL=SOCKET && MV2_CPU_BINDING_POLICY=SCATTER

lrank=$MV2_COMM_WORLD_LOCAL_RANK

grank=$MV2_COMM_WORLD_RANK

case ${lrank} in

0|2|4|6|8|10)

export CUDA_MPS_PIPE_DIRECTORY=/tmp/mps_0

export MV2_NUM_HCAS=1

export MV2_NUM_PORTS=1

export MV2_IBA_HCA=mlx5_0

echo "[CUDA-PROXY] I am globally rank $grank (locally $lrank) on ‘hostname‘ and I am using GPU 0"

"$@"

;;

1|3|5|7|9|11)

export CUDA_MPS_PIPE_DIRECTORY=/tmp/mps_1

export MV2_NUM_HCAS=1

export MV2_NUM_PORTS=1

export MV2_IBA_HCA=mlx5_1

echo "[CUDA-PROXY] I am globally rank $grank (locally $lrank) on ‘hostname‘ and I am using GPU 1"

"$@"

;;

esac

##kill_MPS.sh

#!/bin/bash

echo "[CUDA-PROXY] Kill nvidia-cuda-mps-control on ‘hostname‘..."

killall -9 nvidia-cuda-mps-control

this waiting time is to let killall have effect...

sleep 3

echo "[CUDA-PROXY] Clean /tmp on ‘hostname‘..."

rm -rf /tmp/mps_*

rm -rf /tmp/mps_log_*

exit 0

4

3.1.2 TITAN

Job submission on TITAN is somewhat more straightforward and the following script may be used
directly. The important line is: export CRAY_CUDA_PROXY=1 which enables the use of MPS.

#!/bin/bash

#PBS -A CODENAME

#PBS -N MgMOF74_111_SP

#PBS -j oe

#PBS -l walltime=1:30:00,nodes=XNUMNODES

#PBS -l gres=atlas1%atlas2

PROJECT=chm113

source $MODULESHOME/init/bash

module load cudatoolkit

#module swap PrgEnv-pgi/5.2.40 PrgEnv-intel/5.2.40

export CRAY_CUDA_PROXY=1

EXEDIR=/lustre/atlas/scratch/kaw2e11/chm113/binaries

#EXE=onetep.4313.titan.cpu.intel

EXE=onetep.4313.titan.gpu.pgi

##

SOURCEDIR=/ccs/home/kaw2e11/BENCHMARKS/PGI_GPU/benchmark-XTOTALMPI-XNUMNODES-XMPIPERNUMANODE

INPUT=G_222_80_D2.dat

INFO=PGI_GPU-XTOTALMPI-XNUMNODES-XMPIPERNUMANODE

##

BASENAME=‘basename $INPUT‘-$INFO

OUTPUT=$BASENAME.out

cd $MEMBERWORK/$PROJECT/

mkdir dir-$BASENAME

cd dir-$BASENAME

cp $SOURCEDIR/* $MEMBERWORK/$PROJECT/dir-$BASENAME

aprun -n XTOTALMPI -S XMPIPERNUMANODE -j 2 $EXEDIR/$EXE $INPUT &> $OUTPUT

cd ..

5

