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Activating vdW-DF

The van der Waals energy is calculated in ONETEP using the van der Waals Density
Functional method, developed by Dion et al [1].

The only input variable needed to activate the vdW-DF functional is to set xc_functional
VDWDF. If a vdW_df_kernel file is not present in the working directory, it will be automat-
ically generated.

Theory

The form for the exchange-correlation functional proposed by Dion et al is:

Exc = ErevPBE
x + EPW92

c + Enl
c (1)

where the non-local exchange-correlation energy is given by:

Enl
c =

1

2

ˆ ˆ
drdr′ρ(r)φ(r, r′)ρ(r′) (2)

where ρ(r) is the electron density at r and φ(r, r′) is the nonlocal exchange correlation
kernel whose form is explained in [1].

Non-local correlation energy

The direct calculation of the integral in the form of Eq. 2 is very computationally expensive,
as it involves a six-dimensional spatial integral.

The algorithm proposed later by Roman-Perez and Soler [2] improves the efficiency of
the calculation. They observed that with the form used by Dion et al for φ, the above
expression can be re-written as:

Enl
c =

1

2

ˆ ˆ
drdr′ρ(r)φ(q, q′, r)ρ(r′) (3)

where r = |r− r′|, and q and q′ are the values of a universal function q0[ρ(r), |∇ρ(r)|] at r
and r′. They thus proposed a way to expand the kernel φ using interpolating polynomials
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pα(q) for chosen values qα of q, and tabulated functions φαβ(r) for the kernel corresponding
to each pair of interpolating polynomials. The interpolating polynomials pα are cubic
splines that evaluate to a Kronecker delta on each respective interpolating point. A mesh
of 20 interpolation points is used in Soler’s implementation. The Soler form of the nonlocal
energy can be written as:

φ(q1, q2, r) =
∑
αβ

φαβ(r)pα(q1)pβ(q2) (4)

The universal function q0(r) is in practice given by:

q0(r) =

(
1 +

εPW92
c

εLDA
x

+
0.8491

9

( ∇ρ
2ρkF

)2)
kF (5)

with kF = (3π2ρ)1/3. The quantity q0 is first "saturated" to limit its maximum value,
according to:

qsat
0 (ρ, |∇ρ|) = qc

(
1− exp

(
−

mc∑
m=1

(q/qc)
m

m

))
(6)

where qc is the maximum value of the mesh of qα.
To evaluate this, we first define a quantity θα(r) = ρ(r)pα(q(ρ(r),∇ρ(r)) in real space.

In terms of this, Eq.2 can be written as:

Enl
c =

1

2

∑
αβ

ˆ ˆ
drdr′θα(r)θβ(r

′)φαβ(r) (7)

It can be shown that this can be written as a reciprocal space integral:

Enl
c =

1

2

∑
αβ

ˆ
dkθ∗α(k)θβ(k)φαβ(k) (8)

Since the kernel is radially dependent in real space, it is only dependent on the magni-
tude of the G-vectors, hence the kernel need only be evaluated as a 1-dimensional function
φαβ(k) for each α, β.

The kernel φ and its second derivatives are tabulated for a specific set of radial points
and transformed to reciprocal space. These values are then used to interpolate the kernel
at every point k in reciprocal space required to calculate Eq. 8.

Kernel

This section details the evaluation of the NLXC kernel. The kernel φ(r, r′) as specified by
Dion et al [1] is given by (in atomic units):

φ(r, r′) =
1

π2

ˆ ∞
0

a2da

ˆ ∞
0

b2dbW (a, b)T (ν(a), ν(b), ν ′(a), ν ′(b)) (9)
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where

T (w, x, y, z) =
1

2

[ 1

w + x
+

1

y + z

][ 1

(w + y)(x+ z)
+

1

(w + z)(y + x)

]
, (10)

and

W (a, b) = 2
[
(3− a2)b cos b sin a (11)

+(3− b2)a cos a sin b (12)

+(a2 + b2 − 3) sin a sin b (13)

−3ab cos a cos b
]
/(a3b3), (14)

and
ν(y) = 1− e−γy2/d2 ; ν ′(y) = 1− e−γy2/d′2 ; (15)

where d = |r− r′|q0(r), d′ = |r− r′|q0(r′)
Following this chain of logic, it is clear that this the kernel can in fact be considered as

a function only of |r − r′|, q0(r) and q0(r′), since all other variables are dummy variables
which are integrated over. The kernel can therefore be written as

φ(r, q0(r), q0(r
′)) (16)

This makes it possible to evaluate the integrals above so as to tabulate the kernel values
numerically for a pre-chosen set of radial points and q0 values.

Non-local potential

Starting from Eq. 8, one can evaluate the potential vnl(r) corresponding to this energy, by
evaluating all terms in ∂Enl/∂n(r). The non-local potential vnli at point ri on the grid is
thus written explicitly in terms of the derivatives of the θα quantities with respect to the
values ρj at all other points on the grid:

vnli =
∑
α

(uαi
∂θαi
∂ρi

+
∑
j

uαj
∂θαj
∂∇ρj

∂∇ρj
∂ρi

) (17)

This makes use of the quantities uα(r) =
∑

β F(θβ(k)φαβ(k)): which are already calculated
in the evaluation of the energy.

Using the White and Bird [3] approach, Eq. 17 can be written as:

vnl(r) =
∑
α

(
uα(r)

∂θα(r)

∂ρ(r)
−
ˆ ˆ

iG · ∇ρ(r
′)

|∇ρ(r′)|
∂θα(r

′)

∂|∇ρ(r′)|
eiG·(r−r

′)drdG
)

(18)

For this we need to calculate ∂θ
∂ρ and ∂θ

∂|∇ρ| :
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∂θα
∂ρ

= pα + ρ
∂pα
∂ρ

= pα + ρ
∂pα
∂q

∂q

∂ρ

= pα + ρ
∂pα
∂q

q

kF

∂kF
∂ρ

+ ρ
∂pα
∂q

kF (
∂εc
∂ρ

ε−1x − εcε−2x
∂εx
∂ρ
− 8

3(3π2)2/3
Z

4
(∇ρ)2ρ−11/3)

= pα + q/3
∂pα
∂q

+ kFρ
∂pα
∂q

(
∂εc
∂ρ

ε−1x − εcε−2x
∂εx
∂ρ
− 2Z

3(3π2)2/3
|∇ρ|2ρ−11/3) (19)

∂θα
∂|∇ρ|

= ρ
∂pα
∂q

∂q

∂|∇ρ|
=

Z

2ρkF
ρ
∂pα
∂q
|∇ρ| (20)

Combining Eqs. 18, 19 and 20 gives us the final expression for the nonlocal potential.

Overview of computational algorithm

Module nlxc_mod

The main module for the calculation of the non-local energy and potential is nlxc_mod. The
tabulation of the kernel φ is performed only if a kernel file is not found, by vdwdf_kernel.

The input required to calculate the non-local energy and potential is essentially just the
density and its gradient on the fine grid. The calculation of q and the Fourier transformed
θα from Eq. 8 is performed first, in the routine nlxc_q0_theta. The derivatives of the
θαs with respect to the density and the module of its gradient are calculated on-the-fly in
the real-space loop for the calculation of the non-local potential vnl in Eq. 17. This is to
avoid storing unnecessary arrays. From Eq. 18 two transforms are required per α value, a
forward FFT, followed by a backward FFT for calculating the non-local potential.

Subroutines to interpolate the polynomials as well as the kernel using cubic splines
are used (spline_interp and interpolate). The interpolating polynomials pα used are
Kronecker deltas, so they take the value 1 on the interpolating point and are zero at the
other points.

Module vdwdf_kernel

The kernel φαβ(k) is tabulated for 1024 radial reciprocal space points and 20 q0 points.
Gaussian quadrature is used to calculate Eq. 16 and then the result is Fourier transformed.
The second derivatives of the kernel are calculated by interpolation, and also tabulated.
The default name of the file is vdw_df_kernel. The program will first check if this file
exists: if it does, it will be loaded in and need not be calculated. If it does not, it will
be generated from scratch (which only takes a few minutes) and then it is written out for
future re-use in the current working directory.
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The format of the vdw_df_kernel file is:
N_alpha N_radial
max_radius
q_points(:)
kernel(0:N_radial,alpha,beta)
kernel2(0:N_radial,alpha,beta)
where kernel2 is the array of second derivatives of the kernel):
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