
Spherical wave resolution of identity (SWRI),

Hartree-Fock exchange (HFx), hybrid functionals

and distributed multipole analysis (DMA)

in onetep

Jacek Dziedzic and James C. Womack

v2.00 June 2020

This manual pertains to onetep versions v5.3.4.0 and later.

1 The basics

onetep offers linear-scaling calculation of Hartree-Fock exchange (HFx) and linear-scaling distributed mul-
tipole analysis (DMA) through a variant of density fitting. In this approach products of two NGWFs are
approximated (fitted) using an auxiliary basis of spherical waves centred on the atoms on which the two
NGWFs reside. Before the expansion can be performed, an overlap matrix between spherical waves on
all centres whose NGWFs overlap needs to be calculated. The resultant matrix will be termed the metric
matrix, and the process through which it is obtained will be termed spherical wave resolution of identity
(SWRI). Understanding the keywords controlling SWRI is thus essential for any calculation involving HFx
or DMA.

2 Limitations

All calculations using SWRI have these limitations:

• Open boundary conditions (OBCs) are assumed in all uses of SWRI. If your calculation uses OBCs
(via cut-off Coulomb, Martyna-Tuckerman or multigrid [2]), this is a non-issue. If your calculation
technically uses PBCs, but you have sufficient vacuum padding in every direction (effectively making
it approximately OBC), this is a non-issue. If your system is truly extended in any direction (at least
one NGWF sphere sticks out of the cell and wraps around), this is an issue, as neither HFx nor DMA
will work (producing nonsense). This is not checked!

• All species must have identical NGWF radii. Without this simplification the numerical methods used in
SWRI would get ugly. Typically this is a non-issue, just increase the NGWF radii to the largest value.
This might admittedly be an issue if you have a single species that requires a large NGWF radius. This
is checked against and onetep will not let you do SWRI unless all NGWF radii are identical.

• Although well-controllable, density fitting is an approximation. Using settings that are too crude can
lead to inaccurate results and poor NGWF convergence.

• HFx is incompatible with PAW and onetep will refuse to use both simultaneously.

• HFx and DMA are incompatible with complex NGWFs and onetep will refuse to use both.

• HFx does not work with atoms that have 0 NGWFs, although this is hardly a limitation.

1

3 Spherical wave resolution of identity

3.1 Generating the metric matrix

Calculation of the metric matrix [1, Sec. II.D.1] is challenging. This is because products of spherical waves
(SWs) and products of a spherical wave with a potential of a spherical wave (SWpot) oscillate rapidly and
cannot be reliably integrated on a Cartesian or radial grid. onetep calculates the elements of the metric
matrix by a piecewise approximation of SWs and SWpots with high-order Chebyshev polynomials. Once this
is done, their overlaps can be calculated by overlapping a large number of polynomials, which is easy, but
time consuming.

For a fixed set of atomic positions and chosen NGWF radii the metric matrix needs only be calculated once,
this is done during initialisation. The metric matrix does not depend on the NGWFs themselves or even the
number of NGWFs per atom.

In onetep versions prior to 5.1.2.3, metric matrix elements are evaluated using the method described in
Ref. 1 (section II.D.1), i.e. by 3-D integration over piecewise expansions of SWs/SWpots in Chebyshev
polynomials. This is the “3-D Chebyshev” (3Dc) scheme.

For versions ≥ 5.1.2.3, an alternative metric matrix scheme is available in which metric matrix elements are
decomposed into products of 2-D numerical and 1-D analytic integrals. This is the “2-D numerical, 1-D
analytic” (2Dn-1Da) scheme.

The separation of the 3-D integral in the 2Dn-1Da scheme is made possible by expressing metric matrix
elements for each atom pair in a molecular coordinate frame with the z-axis pointing along the vector between
atomic centres and with a set of SWs aligned in this coordinate system. When expressed in spherical polar
coordinates, the 1-D integration (over the azimuthal angle, φ) is simple to evaluate analytically. The 2-D
integration over (r, θ) can be performed by the same approach used in the 3Dc method, i.e. evaluating
integrals over piecewise expansions of the (r, θ)-dependent parts of the SWs and SWpots in Chebyshev
polynomials.

To obtain the metric matrix in the original set of SWs, which are aligned parallel to the z-axis of a global
(simulation cell) coordinate frame, the SWs in the molecular coordinate frame must be represented in terms
of the SWs in the global coordinate frame. This is achieved by applying a rotation matrix to the real-spherical
harmonic (RSH) components of the SWs/SWpots associated with each atom pair.

For versions ≥ 5.1.5.0, the 2Dn-1Da scheme is the default for evaluating the electrostatic metric matrix. The
3Dc scheme remains the default for the overlap metric matrix (O), since overlap metric matrix evaluation is
not currently supported in the 2Dn-1Da scheme.

Use of the 2Dn-1Da scheme to evaluate the electrostatic metric matrix is strongly recommended, as it reduces
the computational cost (in terms of memory and execution time) of evaluating the matrix by orders of
magnitude compared to the 3Dc scheme (with no apparent loss of accuracy).

To set up SWRI (for both 2Dn-1Da and 3Dc schemes), define the following block:

%block swri

myname lmax qmax metric Ni No flags

%endblock swri

Replace myname with a user-readable name for the SWRI, you will use it later to tell HFx or DMA which
SWRI to use (as you can have more than one SWRI).

lmax is the maximum angular momentum in the SW basis. Supported values are 0 (s-like SWs only), 1 (s- and
p-like SWs), 2 (s-, p- and d-like SWs), 3 (s-, p-, d- and f-like SWs) and 4 (you get the idea). For HFx choose
2 for a crude calculation, 3 for good quality, and 4 for extreme quality. 0 and 1 will likely be too crude to
fully NGWF-converge. Expect 2 to recover more than 99% of HFx energy, and 3 to recover about 99.7%.
See [1, Fig. 8] for an illustrative guide. For DMA choose 0 if you’re only interested in atomic charges, 1 if you
want charges and dipoles, and 2 if you want charges, dipoles and quadrupoles. There is no point in using 3
or 4 for DMA. Be aware that the computational cost grows as O(l4max) (for the entire calculation), and the
memory requirement grows as O(l4

max
) (for the entire calculation).

2

qmax is the number of Bessel (radial) functions in the SW basis. Adding more Bessel functions increases
the size of the basis (linearly) and improves quality. However, each subsequent Bessel function oscillates
more rapidly and beyond a certain point (at about 15 Bessel functions) they become difficult to represent on
Cartesian grids of typical fineness. As a guide, use 7 for a crude calculation, 10 for reasonable accuracy and
14 for extreme accuracy. Again, see [1, Fig. 8] to see a graphical representation of the impact of this setting
on accuracy. There is no upper limit on the value of this parameter; however, onetep will refuse to include
Bessel functions that oscillate too rapidly for your KE cutoff – you will get a warning and high-numbered
Bessel functions will be removed from the basis. The computational cost grows as O(q2

max
), and so does the

memory requirement.

Replace metric with V to use the electrostatic metric in the SWRI, or with O to use the overlap metric.
Specifying VO or OV will generate both metric matrices, although that is not usually done. In general, prefer
the electrostatic metric – the error in the energy due to the density fitting approximation is then second-order
in the fitting error, while for the overlap metric it is first-order.

As mentioned above, for onetep versions ≥ 5.1.5.0 the electrostatic metric (V) is evaluated by default using
the more efficient 2Dn-1Da scheme. The overlap metric (O) cannot (currently) be evaluated using this scheme,
so is evaluated using the more costly 3Dc scheme. Since only a single metric matrix scheme may be used at
a time, if both metric matrices are requested (VO or OV) then onetep will fall back to the 3Dc scheme. In
this situation, it is worth considering whether your calculation can be run with only the electrostatic metric
in order to take advantage of the more efficient 2Dn-1Da scheme.

Ni is the number of intervals into which the integration domain will be divided along each axis for the purpose
of Chebyshev interpolation. In the 3Dc scheme, this is the localisation sphere of an SW (an NGWF sphere,
see [1, Sec. II.D.1]), while in the 2Dn-1Da scheme this is a half-disc with the same radius. For 3Dc, 8 is
the bare minimum, 10 is crude, 12 is accurate and 14 is extremely accurate. You should avoiding going
overboard (recommended value is 12), since the computational cost grows as O(N3

i
) (only for the SWRI

stage, the remainder of the calculation is not sensitive to this value). The memory requirement grows as
O(N3

i
) (only for the SWRI stage). See [1, Fig. 5] to see how the accuracy of the metric matrix depends

on this parameter when using the 3Dc scheme. For 2Dn-1Da, the computational cost (O(N2

i
)) and memory

requirements (O(N2

i
)) are considerably lower, so it is practical to useNi = 14 or larger for routine calculations.

In this case, it is recommended to use 12 or greater. In particular, very crude (less than 10) values should
be avoided when using 2Dn-1Da. Testing of DMA with the 2Dn-1Da scheme suggests that the 2Dn-1Da
scheme is more sensitive than 3Dc to lower values of Ni (i.e. larger errors are produced in multipole moments
compared to values converged with respect to Ni and No).

No is the order of Chebyshev polynomials used in the interpolation. Just like for Ni, for the 3Dc scheme
8 is the bare minimum, 10 is crude, 12 is accurate and 14 is extremely accurate. Again, you should avoid
going overboard (recommended value1 is 12), since the computational cost grows as O(N4

o
) (only for the

SWRI stage, the remainder of the calculation is not sensitive to this value). The memory requirement grows
as O(N3

o) (only for the SWRI stage). See [1, Fig. 5] to see how the accuracy of the metric matrix depends
on this parameter when using the 3Dc scheme. For 2Dn-1Da, the computational cost (O(N3

o
)) and memory

requirements (O(N2

o
)) are again considerably lower, so it is practical to use No = 14 or larger for routine

calculations. In this case, it is recommended to use 12 or greater. For the reasons outlined above for Ni, very
crude (less than 10) values of No should be avoided when using 2Dn-1Da.

For DMA, which is performed during a properties calculation2, crude settings will simply lead to less accurate
multipoles. In HFx, on the other hand, settings that are too crude would prevent convergence because the
exchange matrix would not be sufficiently symmetric. onetep will abort your calculation if the exchange
matrix is later found to not be symmetric to at least 3.4 digits. To avoid frustration, do not go below Ni = 10,
No = 10.

For the 2Dn-1Da scheme, the cost of evaluating the metric matrix is typically significantly smaller than the
overall cost of the subsequent calculation. In this case, it is practical to routinely use higher Ni and No values

1There is a caveat here when using the overlap metric (which you shouldn’t be doing anyway). At the boundary of the
NGWF localisation region a SW has a derivative discontinuity, while a SWpot is smooth together with its derivative. This
discontinuity is poorly approximated with high-order polynomials (Runge effect), and the problem becomes worse when the
number of intervals is small. The setting Ni=12, No=12 is a poor choice in this case. When using the overlap metric, always
use the lowest possible Chebyshev order (2, a parabola) and a large number of intervals to compensate. A decent setting, and
with a comparable cost, would be Ni=72, No=2. Of course you should not be using the overlap metric in the first place!

2Unless you’re doing QM/MM calculations with polarisable embedding.

3

(e.g. Ni = No = 14 or 16).

Generating the metric matrix can be costly (particularly when using the 3Dc scheme). When restarting
calculations that crashed, ran out of walltime, for restarts to do properties, or re-runs with different settings
it makes sense to save the metric matrix to a file and re-use it during restarts. A metric matrix can be reused
as long as the positions of the atoms and the NGWF radii did not change. flags is a combination of one
or more letters or numbers: W, R, P, Q, X, E, D, 2, 3, controlling the behaviour of onetep during SWRI. The
following flags instruct onetep to perform particular actions:

• W – writes the metric matrix to a file, once it has been calculated in its entirety. The file will have the
extension .vmatrix for the electrostatic metric matrix, and .omatrix for the overlap metric matrix.
This is highly recommended.

• R – reads the metric matrix from a file, instead of calculating it. The file will have the extension
.vmatrix for the electrostatic metric matrix, and .omatrix for the overlap metric matrix. This is
highly recommended for restart calculations. onetep will not allow you to use this flag when it knows
the ions will move (TASK GEOMETRYOPTIMIZATION, TRANSITIONSTATESEARCH, MOLECU-
LARDYNAMICS, PHONON, FORCETEST), as the metric matrix gets invalidated once an ion moves.

• P – will instruct onetep to print the metric matrix in text form straight to the output. This can be
useful for visual inspection and debugging, although be aware that for larger systems the output can
be bulky.

• Q – will instruct onetep to quit immediately after the metric matrix is calculated (and potentially writ-
ten and/or printed). This can be useful if the SWRI stage is run separately from the main calculation,
e.g. on a large number of CPU cores that would be excessive for the main calculation.

• X – means “none of the above” and should be used if you don’t intend to write, read, print the metric
matrix and you don’t want onetep to quit at this stage.

The remaining flags change how the SWRI is performed:

• 2 – forces use of the 2Dn-1Da metric matrix evaluation scheme, overriding the default selection. Note
that the 2Dn-1Da scheme is currently only available for evaluation of the electrostatic metric matrix
(V) and onetep will abort with an error if the 2 flag is used in combination with the overlap metric
matrix (O).

• 3 – forces use of the 3Dc metric matrix evaluation scheme, overriding the default selection.

The 2 and 3 flags only have effect when computing the metric matrix. When reading the matrix from disk in
full (R flag), the flags have no effect, as the matrix has already been precomputed. When reading the matrix
in part from atomblocks (see below), the flags will only affect atomblocks that are not read from disk (i.e.
need to be computed).

By using W and R you can re-use a fully calculated metric matrix. For large jobs which take many CPU-core-hours you may

want to re-use partial results simply because you may not have enough walltime to run the SWRI calculation to completion.

By default onetep writes partial results (metric matrix atomblocks) to files (*.[vo]matrixblock) as it churns through the

calculation. These matrixblocks will be automatically read from files if they can be found – i.e. before starting to calculate a

block, onetep will always first look for a corresponding file to try and avoid the calculation, regardless of your flags. Thus,

if your SWRI calculation is interrupted, retain the matrixblock files to make the next run complete faster. If you wrote the

completed matrix to a file, there is no point in keeping the matrixblock files and you should delete them to save disk space.

If you would rather not have to delete them manually, specify E (for “erase”) in flags and they will not be kept (or indeed

written to). Each matrixblock file encodes the position of the two atoms between which it is calculated in the filename. This

proves useful in TASK PHONON calculations and TASK GEOMETRYOPTIMIZATION calculations with some atoms fixed –

atomblocks between pairs of atoms that did not move will not be recalculated needlessly, but rather reloaded from files, unless

you specify E. Finally, the expert option D instructs onetep to disassemble the fully calculated metric matrix into atomblocks

(best used in combination with R and Q). This can be useful if you saved the metric matrix to a file, deleted the matrixblock

files, and later change your mind.

4

3.2 Examples

This creates an SWRI called for hfx, with an expansion up to l=3, 10 Bessel functions, using the electrostatic
metric. Chebyshev interpolation will use 12 intervals and 12-order polynomials. The metric matrix will be
written to a file. That would be standard for a HFx calculation.

%block swri

for_hfx 3 10 V 12 12 W

%endblock swri

Like above, but will read the metric matrix from a file instead of calculating it.

%block swri

for_hfx 3 10 V 12 12 R

%endblock swri

This creates an SWRI called for dma, with an expansion up to l=2, 12 Bessel functions, using the electrostatic
metric. Chebyshev interpolation will use 10 intervals and 12-order polynomials. The metric matrix will not
be written to a file. That would be standard for a DMA calculation.

%block swri

for_dma 2 12 V 10 12 X

%endblock swri

This creates an SWRI called hiqh qual, with an expansion up to l=4, 16 Bessel functions (extremely large
and accurate SW basis set), using the overlap metric (not the best choice). Chebyshev interpolation will use
60 intervals and 2-order polynomials (parabolas). The metric matrix will be written to a file, printed out in
text form, the matrixblock files will be erased, and onetep will quit.

%block swri

high_qual 4 16 O 60 2 WPEQ

%endblock swri

This creates an SWRI called for hfx and dma, with an expansion up to l=2, 9 Bessel functions, using the
electrostatic metric. Chebyshev interpolation will use 14 intervals and 14-order polynomials. The 2Dn-
1Da metric matrix evaluation scheme has been explicitly selected (for versions ≥ 5.1.5.0, this would not be
necessary, as 2Dn-1Da is the default for the electrostatic metric). The resulting metric matrix will be written
to a file and the matrixblock files will be erased.

%block swri

for_hfx_and_dma 2 9 V 14 14 WE2

%endblock swri

As above, but with the 3Dc metric matrix scheme explicitly selected. This will likely be very costly compared
to using the 2Dn-1Da scheme.

%block swri

for_hfx_and_dma 2 9 V 14 14 WE3

%endblock swri

5

3.3 Choosing which species participate in a SWRI

For every SWRI defined like above you need to specify which atomic species participate in it. This allows
performing an SWRI for a subsystem, e.g. doing DMA only for atoms of a solute in the presence of a solvent,
but not for atoms of the solvent itself. In such a scenario atomblocks only need to be calculated between
atoms such that at least one atom belongs to the SWRI. For HFx this is less meaningful, and you will want
to list all your species in the block. Note how the block name includes the name of the SWRI defined above
and may look like this:

%block species_swri-for_hfx

H

O

C

%endblock species_swri-for_hfx

if your SWRI was called for hfx and your system is composed of species H, O and C.

3.4 Advanced SWRI options

swri verbose (logical) – set this to T to get detailed information on matrixblock I/O. Useful when you
want to know where onetep is looking for matrixblock files and whether each file was succesfully loaded or
not. This is output from all MPI ranks, so can make the output cluttered. Default: F.

swri cheb batchsize (integer) – sets the size of the batches in which SWs are processed in the calculation
of the metric matrix. For the 3Dc scheme, the default is 12. Increasing this value can improve efficiency (by
better balancing threads), but will increase memory load. Keep this divisible by the number of OMP threads
for best performance. For the 2Dn-1Da scheme, batching has little benefit and can lead to significant load
imbalance across MPI processes for larger systems. Thus, the default for 2Dn-1Da is the number of SWs in
the auxiliary basis set. For both schemes, if this value is set larger than the number of SWs in the auxiliary
basis set, it will be capped accordingly.

swri assembly prefix (string) – sets the prefix for the matrixblock files that are assembled into the metric
matrix. The default is the rootname of your onetep input. Adjusting this can be useful if you keep a large
number of matrixblock files in one directory and have multiple calculations, in different directories, using
these matrixblock files.

swri proximity sort point (string of three values in bohr) – metric matrix blocks are evaluated in
order, with blocks between atoms closest to a predefined point done first. This is useful if you have a giant
SWRI calculation (say for a solute and a few solvation shells) and would like other calculations to start using
first matrix blocks as soon as possible (e.g. for calculations on just the solute). Using this keyword you can
choose the point for sorting the atomblocks. The default is 0.0 0.0 0.0. A unit of bohr is implicitly added
(do not specify it).

swri swop smoothing, swri overlap indirect, swri improve inverse – these are experimental features,
do not use these.

6

4 Hartree-Fock exchange

Now that you have SWRI set up, a basic HFx (or hybrid functional) calculation should be simple to set up.
The following three keywords are mandatory and do not provide defaults:

hfx use ri (string) – tells HFx which SWRI to use. Specify the name used in the SWRI block, e.g. hfx use ri

for hfx.

hfx max l (integer) – specifies the maximum angular momentum in the SW basis. In most scenarios
this will be equal to lmax that you specified in the SWRI block. Read the description of lmax (Sec. 3.1) to
understand the meaning of this parameter. You can use a lower value than the one specified in the SWRI
block if you want to use only a subset of the SW basis set (e.g. for benchmarking, or doing DMA with a
lower lmax than you use for HFx), but not for HFx (where you must use the same value that you used in the
SWRI block).

hfx max q (integer) – specifies the number of Bessel functions in the SW basis for each angular momentum
channel. In most scenarios this will be equal to qmax that you specified in the SWRI block. Read the
description of qmax (Sec. 3.1) to understand the meaning of this parameter. You can use a lower value
than the one specified in the SWRI block if you want to use only a subset of the SW basis set (e.g. for
benchmarking, or doing DMA with a lower qmax than you use for HFx), but not for HFx (where you must
use the same value that you used in the SWRI block).

With the above set up, the last step is to choose a suitable functional through xc functional. The following
hybrid functionals use HFx: B1LYP, B1PW91, B3LYP, B3PW91, PBE0, X3LYP. For a pure Hartree-Fock calculation
use HF.

The following two keywords might be handy:
hfx cutoff (physical) – specifies the distance-based cutoff for all HFx interactions. The default is 1000
bohr, which effectively corresponds to no truncation. In the absence of truncation onetep’s HFx imple-
mentation scales as O(N2), so you are advised to use HFx truncation even if you do not use density kernel
truncation. Exchange interactions are rather short-ranged, and for systems with a band-gap it should be safe
to truncate them at 20 a0. See [1, Figs. 19, 20] for more details. Do not use a value smaller than twice the
NGWF radius.

hfx metric (string) – selects the metric actually used for HFx calculations. The default is electrostatic.
The other option is overlap. The appropriate metric matrix must have been included at the SWRI stage (V
or O, respectively).

Other HFx-related keywords (hfx nlpp for exchange, hfx read xmatrix and hfx write xmatrix) corre-
spond to experimental features and should not be used.

7

4.1 Example

The following is a bare-bones example for a reasonably good-quality HFx calculation on a slightly distorted
water molecule. That should converge in 11 NGWF iterations within 1.5 minute on a desktop machine
(2 MPI ranks, 4 OMP threads each), requiring about 4 GiB of RAM.

xc_functional B3LYP

cutoff_energy 800 eV

%block swri

for_hfx 3 10 V 10 10 WE

%endblock swri

%block species_swri-for_hfx

O

H

%endblock species_swri-for_hfx

hfx_use_ri for_hfx

hfx_max_l 3

hfx_max_q 10

%block lattice_cart

25.00 0.00 0.00

0.00 25.00 0.00

0.00 0.00 25.00

%endblock lattice_cart

%block positions_abs

ang

O 5.79564200 7.40742600 6.63194300

H 5.19938100 8.05407400 6.24141400

H 5.16429100 6.74016800 6.88482600

%endblock positions_abs

%block species

O O 8 4 8.0

H H 1 1 8.0

%endblock species

%block species_pot

O "oxygen.recpot"

H "hydrogen.recpot"

%endblock species_pot

8

5 DMA

DMA (Distributed Multipole Analysis) is a technique for partitioning charge density into single-atom contri-
butions and finding a set of point multipoles that most accurately represent this charge density. The point
multipoles are usually, although not universally, atom-centered – this is the case in onetep. DMA was
proposed by Rein [3] and has been pioneered and popularised by Stone [4] and Alderton [5]. It is typically
performed in a Gaussian basis set [6,7], but onetep uses a version adapted to the NGWF basis. More details
on our approach can be found in Refs. [8, 9].

DMA in onetep first uses SWRI (cf. earlier Sections) to expand NGWF-NGWF overlaps (not exactly atom-
pair densities, because there is no density kernel there) in an auxiliary SW basis set. Depending on the
metric, this density fitting will strive to either minimise the difference in electronic density between the
original density and the fit (for the overlap metric), or the electrostatic energy of the difference in densities
interacting with itself (for the electrostatic metric). The use of electrostatic metric is preferred. Once the
NGWF-NGWF overlaps are expressed in an SW basis, owing to certain properties of SWs and to the fact that
in onetep they are chosen to be atom-centered, it becomes easy to find atom-centered point multipoles that
yield the (exactly) equivalent potential. This stage is termed spherical wave expansion (SWX) and its result
are atom-centered point multipoles that are the best fit to the original electronic density (under the assumed
metric). Apart from calculating electronic multipoles, onetep’s DMA also calculates total (electronic + ionic
core) atom-centered multipoles. Also calculated are the total multipoles of the system (e.g.. the molecular
dipole or quadrupole), suitably averaged over all the atoms that were part of the SWRI. For non-neutral
molecules the value of the dipole depends on the point where it is calculated (similarly for higher multipoles),
and so the total multipoles are calculated at a reference point of your choosing.

DMA in onetep is performed in two contexts. The most common is during a task properties calculation
(“properties-DMA”). The other use of DMA is in QM/MM calculations using onetep and tinker (tinktep
approach, cf. [8], “polemb-DMA”). Some DMA keywords pertain to both contexts, and some pertain only to
one of them – this will be carefully highlighted. It is possible to mix the two to a reasonable degree (i.e. to
perform QM/MM with one set of DMA parameters, and properties-DMA at the end of the run, with another
set of parameters). By “reasonable degree” I mean that some of the parameters are shared.

5.1 DMA: minimal set-up

To use DMA, first set up SWRI (cf. earlier Sections). Now that you have SWRI set up, a basic calculation
using DMA should be simple to set up. First, specify dma calculate T to enable DMA, as it is off by default.
Once you’ve done that, the following keywords become mandatory:

dma use ri (string) – tells DMA which SWRI to use. Specify the name used in the corresponding SWRI
block, e.g. dma use ri for dma.

dma max l (integer) – specifies the maximum angular momentum in the SW basis used in DMA. In most
scenarios this will be equal to lmax that you specified in the SWRI block. Read the description of lmax

(Sec. 3.1) to understand the meaning of this parameter. You can use a lower value than the one specified in
the SWRI block if you want to use only a subset of the SW basis set (e.g. for benchmarking). This keyword
only affects properties-DMA, the equivalent for polemb-DMA is pol emb dma max l. This keyword needs to
be specified even if you do not plan to use properties-DMA (in that case, specify 0). If you only care about
atom-centered charges, specify 0. If you care about atom-centered charges and dipoles, specify 1. If you care
about atom-centered charges, dipoles and quadrupoles, specify 2.

dma max q (integer) – specifies the number of Bessel functions in the SW basis for each angular momentum
channel to be used in DMA. In most scenarios this will be equal to qmax that you specified in the SWRI
block. Read the description of qmax (Sec. 3.1) to understand the meaning of this parameter. You can use
a lower value than the one specified in the SWRI block if you want to use only a subset of the SW basis
set (e.g. for benchmarking). This keyword only affects properties-DMA, the equivalent for polemb-DMA is
pol emb dma max q. This keyword needs to be specified even if you do not plan to use properties-DMA (in
that case, specify 0).

9

5.2 Non-mandatory keywords affecting both properties-DMA and polemb-DMA

dma metric (string) – selects the metric used for DMA calculations. The current default is electrostatic.
The other option is overlap. The appropriate metric matrix must have been included at the SWRI stage
(V or O, respectively). This keyword affects both properties-DMA and polemb-DMA.

dma bessel averaging (boolean) – specifies whether all DMA-based multipoles are to be averaged over an
even-odd pair of qmax. Multipoles obtained with DMA display an oscillatory behaviour when plotted as a
function of qmax. This has to do with how the Bessel functions sample the radial profile of NGWFs. In essence,
for all even qmax a particular multipole will be overestimated, while for all odd qmax the same multipole will
be underestimated (or the other way round). Other multipoles will be affected similarly (except in reverse)
to compensate. This oscillatory behaviour decays as the quality of the SW basis is increased, but the decay
is slow. Much more stable multipoles are obtained by averaging the results of two SWX runs – one with the
qmax the user specified in dma max q, and one with qmax that is less by one. This even-odd averaging can
be performed automatically by specifying dma bessel averaging T, and this is done by default. When this
option is enabled, output files include multipoles obtained with both SWX qualities, followed by the average,
except for the .dma multipoles gdma like.txt file, which will contain only the final, averaged multipoles.
There is no extra effort associated with this option at the SWRI stage, and the effort of the SWX stage
(which is usually much, much lower) is practically doubled (two separate SWXs have to be performed). This
keyword affects both properties-DMA and polemb-DMA.

dma scale charge (boolean) – specifies DMA charge-scaling is to be performed (default) or not. This an
important option. The multipoles obtained with DMA are always approximate. The total DMA monopole
(charge) will be close to, but not exactly equal to, the total charge of the system (or its subset, if DMA’s
SWRI did not encompass all atoms). This means that the total DMA monopole of a nominally neutral
system will not be exactly zero, but typically a very small fraction of an electron. This is inconvenient,
because it formally breaks the translational invariance of the total dipole, which begins to depend, very
slightly, on the reference point where it is calculated. The easiest workaround is to scale, a posteriori, the
DMA monopole by the ratio of expected charge to the obtained DMA charge. This scaling is factor will
be very close to zero (e.g. 0.9998), unless your SW basis set is very crude (single-digit qmax, etc.). The
“expected” (electronic) charge either obtained automatically (by default), or can be specified manually using
dma target num val elec. When not specified manually, the expected electronic charge is determined as
follows. If DMA’s SWRI encompasses all atoms (“full-system DMA”), it is equal to the total number of
valence electrons in the system (obtained from Tr [KS]). If DMA’s SWRI does not encompass all atoms
(“subsystem DMA”), Mulliken analysis is performed every time charge-scaling needs to be done (essentially
at every LNV step, or twice per LNV step when Bessel averaging is used), and Mulliken charges of all atoms
within DMA’s SWRI are summed to obtain the expected electronic charge. Using DMA charge-scaling is
recommended (hence it’s on by default), but care must be taken when using it with polemb-DMA (there are
no issues with properties-DMA). The following issues and limitations arise. (1) In polemb-DMA the DMA
multipoles enter LNV and NGWF gradient expressions. The quantity Tr [KS] is not strictly a constant, and
has non-zero DKN and NGWF derivatives, leading to additional terms in LNV and NGWF gradients when
charge-scaling is used. These extra terms have been implemented for LNV gradients, but not for NGWF
gradients, where they become really hairy (these are under development). Hence the threefold combination of
polemb-DMA, charge-scaling and NGWF optimisation is not permitted (will refuse to run). (2) The threefold
combination of polemb-DMA, charge-scaling and dma target num val elec is not permitted (will refuse to
run), regardless of whether NGWF optimisation is used or not. This is because the expected number of
electrons becomes constant (user-specified value) in this scenario, which is incompatible with the charge-
scaling corrections accounting for Tr [KS]. Long story short: use DMA charge-scaling for properties-DMA,
but not for polemb-DMA. This keyword affects both properties-DMA and polemb-DMA.

dma target num val elec (integer) – specifies the expected number of valence electrons for DMA. This
keyword should only be used when DMA charge-scaling is in effect (see above), and only if the automatic
determination of the expected number of electrons (see above) in the part of your system seen by DMA is
not satisfactory. The default is for this keyword to be omitted. This keyword affects both properties-DMA
and polemb-DMA.

polarisation simcell refpt (real real real). The default is 0.0 0.0 0.0. Specifies the reference
point in the simulation cell (in bohr) at which total DMA multipoles are calculated. This is mostly useful
if your system (strictly speaking: your DMA subsystem) is not charge-neutral and you are interested in

10

the value of the total dipole. When the system is non-neutral, the total dipole is not translation invari-
ant, and a reference point for calculating it needs to be specified. This keyword specifies this reference.
Also note that when a simcell full-density polarisation calculation is performed (via task properties and
polarisation simcell calculate), this keyword also adjusts this calculation’s reference point. This key-
word affects both properties-DMA and polemb-DMA.

dma precise gdma output (boolean). The default is on (T). One of the files output by DMA is the
.dma multipoles gdma like.txt file, which is formatted as to be compatible with the output generated by
Stone’s GDMA program. This output can be directly used by other programs expecting input in this format.
The original GDMA format is fixed-form, meaning the precision of the output multipoles is rather restricted
by the number of digits that can be output. In polemb-DMA mode this precision is insufficient to accurately
drive the MM calculation performed by an external program (tinker). Specifying dma precise gdma output

T instructs onetep to output multipoles with the additional necessary precision, but breaks strict compat-
ibility with the GDMA format. If the external program you use to parse the GDMA file is aware of that
(e.g. tinker can be suitably patched), this is fine. If you have no control over the external program and
need onetep to adhere strictly to the GDMA format, use dma precise gdma output F.

5.2.1 Expert, non-mandatory keywords affecting both properties-DMA and polemb-DMA

Just don’t. These are used for experimental purposes, particularly in QM/MM.

dma multipole scaling (real) – causes all DMA multipoles to be scaled by a constant. This affects both
the output multipoles and the multipoles used internally in polemb expressions. Whenever necessary (during
charge-scaling, in gradients) this scaling is temporarily undone internally for consistency. This keyword affects
both properties-DMA and polemb-DMA.

dma dipole scaling (real) – causes all DMA dipoles to be scaled by a constant. This affects both the
output dipoles and the dipoles used internally in polemb expressions. Whenever necessary (essentially in
gradients) this scaling is temporarily undone internally for consistency. This keyword affects both properties-
DMA and polemb-DMA.

dma quadrupole scaling (real) – causes all DMA quadrupoles to be scaled by a constant. This affects
both the output quadrupoles and the quadrupoles used internally in polemb expressions. Whenever necessary
(essentially in gradients) this scaling is temporarily undone internally for consistency. This keyword affects
both properties-DMA and polemb-DMA.

5.3 Non-mandatory keywords affecting only properties-DMA

dma output potential (boolean). The default is off (F). When turned on (T), during properties-DMA the
electrostatic potential due to all DMA electronic multipoles is calculated on the z = 0 and z = zmax faces of
the simulation cell (on all fine-grid points lying on those faces). This potential is output to text files. This is
useful for assessing the quality of the DMA approximation to the full, distributed charge density. If DMA’s
SWRI does not span the entire system, the output potential is only due to those atoms included in DMA’s
SWRI. This keyword affects only properties-DMA.

dma output potential reference (boolean). The default is off (F). When turned on (T) and dma output-

potential is also on, during properties-DMA the reference electrostatic potential due to the full, distributed
electronic density is calculated on the z = 0 and z = zmax faces of the simulation cell (on all fine-grid points
lying on those faces). This potential is output to text files. This is useful to obtain a reference for assessing
the quality of the DMA approximation to the full, distributed charge density (see above). Regardless of
whether DMA’s SWRI spans the entire system or not, the output potential is due to all electrons in the
system. Thus, the two sets of potentials are only comparable in full-system DMA. The reference potential
is calculated by a pointwise integration over the entire volume (fine-grid) for every point on the two faces,
which is a time-consuming process, so use sparingly. This keyword affects only properties-DMA.

11

5.4 Non-mandatory keywords affecting only polemb-DMA

Refer to the separate documentation for polarisable embedding in onetep.

5.5 Example

The following is a bare-bones example for a reasonably good-quality properties-DMA calculation on a slightly
distorted water molecule. That should converge in 11 NGWF iterations within 1 minute on a desktop machine
(2 MPI ranks, 4 OMP threads each), requiring about 3 GB of peak RAM.

xc_functional PBE

cutoff_energy 800 eV

do_properties T

%block swri

for_dma 2 14 V 12 12 WE

%endblock swri

%block species_swri-for_dma

O

H

%endblock species_swri-for_dma

dma_calculate T

dma_use_ri for_dma

dma_metric electrostatic

dma_max_l 2

dma_max_q 14

dma_scale_charge T

dma_bessel_averaging T

%block lattice_cart

25.00 0.00 0.00

0.00 25.00 0.00

0.00 0.00 25.00

%endblock lattice_cart

%block positions_abs

ang

O 5.79564200 7.40742600 6.63194300

H 5.19938100 8.05407400 6.24141400

H 5.16429100 6.74016800 6.88482600

%endblock positions_abs

%block species

O O 8 4 8.0

H H 1 1 8.0

%endblock species

%block species_pot

O "oxygen.recpot"

H "hydrogen.recpot"

%endblock species_pot

Expected results:

Table 1: Dipole moment of distorted water molecule. Comparison of accuracy: full density vs. DMA point
multipoles.

Description Dipole (au) Dipole (debye)
Full density (cores + NGWFs) 0.7564 1.9226

DMA (point multipoles, qmax=14) 0.7477 1.9005
DMA (point multipoles, qmax=13) 0.7680 1.9519

DMA (point multipoles, Bessel-averaged) 0.7578 1.9261

12

6 Advanced options

6.1 Making Hartree-Fock exchange faster or less memory-hungry

Hartree-Fock exchange is not fast, although we’ve made great improvements in v5.3.4.0. For small systems
(< 200 atoms), with a bit of luck, it will be an order of magnitude slower than GGA calculations. For large
systems (≈ 1000 atoms) expect it to be two orders of magnitude slower.

The main way to improve performance is by using more RAM – this is because there are plenty of opportunities
for caching some results that would otherwise have to be recomputed. If HFx was to cache everything, it
would quickly exhaust all available RAM, even on well-equipped machines. Therefore, there are limits in
place for each of the caches. These limits are expressed in MiB (1048576 bytes) and are per MPI rank.

Remember that OMP threads can share memory, while MPI ranks cannot. This means that the key to
obtaining high performance with HFx is to use as many OMP threads as possible. In most HPC settings
this will mean using only 2 MPI ranks per node (one MPI rank per NUMA region, most HPC nodes have two
NUMA regions). For example on Iridis5, with 40 CPU cores on each node, best performance is obtained by
using 2 MPI ranks, with 20 OMP threads each, on every node. This is in contrast to non-HFx calculations,
which typically achieve peak performance for 4-5 OMP threads. HFx is well-optimised for high thread counts.
By reducing the number of MPI ranks, you allow each rank to use more RAM. This is the key to success.
Don’t worry about the drop in performance of the non-HFx part, it will be dwarfed by the gain in HFx
efficiency.

The easiest way to control how much RAM HFx can use is via the parameter hfx memory limit. The default
value is 4096, meaning HFx will not ask for more than 4 GiB of RAM per MPI rank. This is in addition to
any memory use from the rest of onetep. If you can spare more RAM, definitely tell this to the HFx engine
by saying e.g.

hfx memory limit 16384 ! I have 16 GiB per MPI rank to spare.

The HFx engine will automatically distribute this RAM across the three main caches. Or, more specifically, it
will first consume the amount of RAM absolutely needed for core HFx functionality, and then distribute the
rest to the three caches. You will get a banner informing you about how much memory went into satisfying
the minimum requirements:

+--+

| HFx TEFCI engine: minimum requirements |

| Estimated memory requirement per MPI rank |

+--+

| Radial Bessel lookup : 30.52 MB |

| Dd NGWFs hash table : 1.66 MB |

| All remote NGWFs hash table : 37.38 MB |

| dlists hash table : 6.53 MB |

| coeffs hash table (estimate) : 26.93 MB |

| V metric matrix hash table : 377.59 MB |

| f auxiliary term : 131.78 MB |

| P term in NGWF gradient : 131.78 MB |

| Q term in NGWF gradient : 238.88 MB |

| My kets in NGWF grad. (estimate) : 78.09 MB |

| Local kets in NGWF grad. (estim.) : 43.20 MB |

| K^{CD} hash table : 3.88 MB |

| K^{AB} hash table : 3.60 MB |

| tcK^A_B hash table : 3.60 MB |

| tcK^B_A hash table : 3.60 MB |

+--+

| Estimated peak total per MPI rank : 1.09 GB |

+--+

13

In the event that the memory limit specified with hfx memory limit is below even the minimum requirement
(1.09 GB in the example above), you will get an error message explaining how much more RAM you would
need to continue. Be aware of two things: (1) calculations with not much (or no) memory above the minimum
requirement will be very slow, (2) the above is only an estimate. Under some circumstances HFx may consume
slightly more memory, but not much. If you run out of memory, it is usually the NGWF gradient calculation
(its non-HFx part) that breaks the camel’s back.

Another banner informs you about how the remaining RAM is divided across the three caches (“hash tables”).
It may look like this:

HFx: - Adjusting cache sizes according to weights: 0.6250, 0.3125, 0.0625.

+--+

| HFx TEFCI engine: user-adjustable requirements |

| Estimated memory requirement per MPI rank |

+--+

| SWOP hash table : 3.61 GB |

| Expansions hash table : 1.81 GB |

| AD NGWF products hash table : 369.00 MB |

+--+

| Estimated peak total per MPI rank : 5.77 GB |

+--+

HFx: - Peak memory use capped at 6998.2 MB per MPI rank.

Here the user specified hfx memory limit 7000 and HFx distributed the remaining 5.77 GB across the three
caches with a default set of weights that is 10:5:1 (= 10

16
: 5

16
: 1

16
= 0.6250 : 0.3125 : 0.0625). This is an

empirically determined near-optimal default for valence calculations. For conduction calculations the default
is to give all remaining RAM to the SWOP hash table, because in conduction calculations expansions are
never re-used and the number of NGWF products is so large, that it’s faster to give up on storing them
entirely.

The three caches store, respectively:

• Spherical waves or potentials thereof (“SWOPs”). Generating SWOPs is typically the main bottleneck
of any HFx calculation, and increasing the size of this cache will lead to significant improvements, with
returns diminishing after hit ratios exceed 90-95%.

• Spherical wave expansions (potentials of linear combinations of spherical waves on a centre). These can
help performance too, but their size quickly becomes unwieldy.

• NGWF products. Less useful than the above, but cheap to store, except in conduction calculations.

In general, it is best to rely on the default division and to specify only hfx memory limit. However, if you
feel you can do better, you can manually set the maximum for any number of caches, using the directives
cache limit for swops, cache limit for expansions, cache limit for prods. This might be useful if
you specifically want to disable one or more of the caches (by specifying 0). Remember that hfx memory limit

is still in effect by default, even if you do not specify it, and it will interact with the above. If you want
to turn off the automatic balancing of memory limits, specify hfx memory limit -1. Once you do this, the
specified cache limits will be used (with a default of 1024). Finally, if you keep the automated balancing,
hfx memory weights, which accepts three real numbers, can be used to set the desired weights, if you are not
satisfied with the default. The weights do not need to add to 1, they will be automatically rescaled. They
cannot all be zero, but some of them can be zero (which then turns off the associated cache).

The utilisation of each cache is reported at some stage of the calculation (assuming hfx output detail is at
NORMAL or higher). You will see banners like this:

+--+

| MPI | | | | |

| rank | SWOP cache capacity | SWOPs needed | Cacheable | Hit ratio |

+--+

| 0 | 3691 MiB (24189 el) | 109140 el | 22.16% | 58.70% |

| 1 | 3691 MiB (24189 el) | 109140 el | 22.16% | 58.85% |

+--+

14

This is a breakdown over all MPI ranks (only two in this case), informing you that you devoted about 3.7 GB
per MPI rank to the SWOP cache, which enables caching 24189 elements, whereas 109140 elements could
be stored, if you had more RAM. You were thus able to cache about 22% of all elements, but because HFx
stores the most reusable ones first, the cache hit ratio will be about 59% – that is, in 59% of cases when HFx
will be looking for a SWOP, it will find it in the cache. Different SWOPs will be needed on different nodes,
hence the hit ratios are not exactly equal. Looking up SWOPs in the cache is at least an order of magnitude
faster than recaculating them, so you should aim for a hit ratio of at least 90%.

Banners for the expansion and NGWF product caches will be printed after the first LNV (or EDFT) iteration
(for hfx output detail VERBOSE) or after every energy evaluation (for hfx output detail at PROLIX or
higher). They look like this:

HFx: +---+

HFx: | MPI | Expansion cache |

HFx: | rank | hits | misses | total | hit ratio |

HFx: +---+

HFx: | 0 | 1982298 | 13369145 | 15351443 | 12.91 % |

HFx: | 1 | 1947916 | 13512601 | 15460517 | 12.60 % |

HFx: +---+

HFx: +---+

HFx: | MPI | AD NGWF product cache |

HFx: | rank | hits | misses | total | hit ratio |

HFx: +---+

HFx: | 0 | 1947809 | 7499676 | 9447485 | 20.62 % |

HFx: | 1 | 1992291 | 7737078 | 9729369 | 20.48 % |

HFx: +---+

and show you a per-MPI-rank breakdown of how many hits and misses were recorded in accessing the cache,
and what the hit ratio was. You will be able to achieve 100% only for the smallest of systems,

Changing cache limits only affects the tradeoff between RAM and CPU time, it has absolutely no effect on
results, only on the time and memory it will take to arrive at them. If you are very pressed for RAM, you
can set all the above cache sizes to 0. This will stop caching altogether, conserving memory, but will vastly
increase run time, by a factor of several.

A simple, perhaps surprising, way of increasing performance (slightly) is by using PPDs that are not flat.
By default onetep initialises the third dimension of a PPD to 1, making them flat. This makes sense in
the absence of HFx. With HFx the book-keeping of the caching machinery will be faster when the PPDs
are slightly larger. Preferably use ppd npoints to make the PPDs 5 × 5 × 5 or 7 × 7 × 7. It might be
necessary to explicitly set psinc spacing and carefully choose the box dimensions. An easy solution is to
choose psinc spacing 0.5 0.5 0.5 which corresponds to a kinetic energy cutoff of 827 eV, and to make
your box dimensions divisible by 2.5 a0 (for 5× 5× 5 PPDs).

Finally, you can try omitting some terms in the expansion, if the expansion coefficients are below a certain
threshold. This will affect the accuracy of your results, and so by default nothing is thrown away. This can be
done via the keyword swx c threshold which takes a real number as an argument. Whenever an NGWF-pair
expansion coefficient is below this value, potentials from this particular SW for this pair of NGWFs will not
even be generated. This can be used in conjunction with a distance-based truncation. A value like 1E-5 will
throw away maybe 2-3% of the terms. 1E-3 will throw away about 10-15% (so, little gain), and this will be
enough to impair your NGWF convergence. I do not recommend changing this setting.

6.2 Other advanced options

swx output detail (string) – controls the verbosity of the spherical wave expansion. Allowed options:
BRIEF, NORMAL, VERBOSE. Defaults to NORMAL. At VERBOSE you might feel overwhelmed by the output from
all MPI ranks letting you know which atom they are working on (lines looking like “+ A: 1” or “- B: 1”).
This is useful for big systems, where it takes a while to get from one LNV iteration to the next one, with no
output otherwise.

15

hfx output detail (string) – controls the verbosity of Hartree Fock exchange. Allowed options: BRIEF,
NORMAL, VERBOSE, PROLIX, MAXIMUM. Defaults to the value of output detail. At VERBOSE you might feel
overwhelmed by the output from all MPI ranks letting you know which atom they are working on (lines
looking like “- B: 1 [0] (1)”). This is useful for big systems, where it takes a while to get from one LNV
iteration to the next one, with no output otherwise. At PROLIX there is even more feedback. At MAXIMUM

even the X matrix is printed, which will make your output file extremely big. This is recommended only
when debugging. The recommended setting is VERBOSE.

hfx bessel rad nptsx (integer) – specifies how many points are used in the radial interpolation of Bessel
functions. The default is 100000 and should be sufficient. Increasing this value (perhaps to 250000 or so)
improves accuracy, particularly if your simulation cell is large, but there is an associated linear memory cost
(typically in tens of MB per MPI rank).

use sph harm rot (logical) – Manually activate the sph harm rotation (spherical harmonic rotation)
module (used to evaluate the metric matrix in the 2Dn-1Da scheme). In normal operation this is not
necessary, since the module will be activated if it is detected that spherical harmonic rotation is required.
Setting this is to false has no effect, since the option will be overridden if onetep detects that the module
is needed, anyway.

swx dbl grid – experimental functionality, please do not use.

6.2.1 devel code values

SHROT:DEBUG=[T/F]:SHROT – Activate debug mode for the sph harm rotation module

SHROT:UNIT TEST=[T/F]:SHROT – Activate unit testing for the sph harm rotation module

7 Frequently asked questions

7.1 What hybrid functionals are available in ONETEP?

B1LYP, B1PW91, B3LYP, B3PW91, PBE0, X3LYP. For a pure Hartree-Fock calculation use HF.

7.2 How big can my system be when using HFx?

Up to 200 atoms should be a breeze on a desktop machine (64 GB RAM, 16 cores). About 500-600 atoms
will be a limit for a desktop machine, but it might take a week or two. Larger systems will be off-limits
because you will either run out of memory (if using > 1 MPI rank), or hit sparse mod integer overflows (if
using 1 MPI rank).

On a HPC cluster (say, 640 cores) up to 1000 atoms should not be too difficult (3-4 days). Current record is
4048 atoms (640 cores, 20 days, June 2020). With significant resources (5000+ cores) you should be able to
do 10000 atoms, but this has not been tried.

7.3 How do I make HFx faster?

Use as many OMP threads as possible, without crossing NUMA regions. On a typical HPC system this will
mean using only 2 MPI ranks per node, and on a desktop machine – only 1 MPI rank. This will minimise the
number of MPI ranks, allowing you to give much more memory to each of them. Increase hfx memory limit

from the default value of 4096 to however much you can spare. This is the maximum RAM consumption
of HFx (on top of the rest of onetep) per MPI rank. Here it is always the higher the better, except you
don’t want to run out of memory. Use ppd npoints 5 5 5 or ppd npoints 7 7 7 for a slight efficiency
gain.

16

7.4 I’m running out of memory

Symptoms: you get error messages like “Killed”, or “Out of memory: Kill process nnn (onetep.exe)” in dmesg

output, or your system starts thrashing (swapping memory to HDD). What you can do:

• Reduce the number of MPI ranks per node. In the worst case scenario, undersubscribe (leave some
cores idle), even to the point of having only 1 MPI rank per node.

• Reduce hfx memory limit from the default value of 4096 to something smaller.

• Reduce the quality of the SW expansion (lmax, qmax) (this will affect the quality of results).

• If you’re running out of memory at the NGWF gradient stage, reduce threads num fftboxes. The
default is equal to the number of OMP threads. Reduce it to 1. This is a component of onetep that
consumes quite a bit of RAM irrespective of whether HFx is used or not.

• Use high-memory nodes. Many HPC facilities provide these.

• Increase the number of compute nodes used in the calculation. Some of the necessary data will be
distributed across nodes, reducing per-node load. With a large number of OMP threads, you can easily
use much more CPUs than you have atoms in your system.

7.5 The HFx engine does not use all the memory I asked it it to use. Why?

If you devote too much memory to one of the caches, only as much will be used as is needed to store all that
is needed. Perhaps adjust hfx memory weights to give this memory to where it is needed more.

7.6 My calculation aborts with Error in sparse count ss: Integer overflow in

sparse matrix index detected. What now?

Your sparse matrices are too large, overflowing integer indices in onetep’s sparse matrix machinery. Essen-
tially you are trying to run a calculations with too many atoms on too few MPI ranks. Increase the number
of MPI ranks or decrease hfx cutoff. The latter will impact results.

7.7 My calculation crashes with a SIGSEGV and the last line of output is

“KSKS matrix filling:”. What now?

Same as above, except the integer overflow has not been detected.

7.8 My calculation aborts with Exchange matrix not deemed accurate enough for

a stable calculation. What now?

One of the approximations broke down. You turned the “speed vs. accuracy” knob too far towards “speed”.

• Is your SW expansion quality too low? The minimum reasonable quality is about lmax = 2, qmax = 8,
see [1, Fig. 8]. For some systems this might not be enough, particularly in pure Hartree-Fock calculations
(xc functional HF). Try lmax = 3, qmax = 10.

• Is your KE cutoff too low? In general, don’t go below 800 eV.

• Is your Chebyshev interpolation quality too low? Ni should be at least 10, preferably 12. No should
also be at least 10, preferably 12.

• Is the number of points in the radial Bessel interpolation (hfx bessel rad nptsx) too low? Don’t go
below 100000. For larger simulation cells you might want to use a higher value (say, 250000).

17

7.9 Can I do conduction calculations with HFx?

Yes!

Just make sure all NGWF radii are equal for all species and across species and species cond blocks.
You may reuse the metric matrices between the valence and conduction calculation. Have a lot of CPU
power available. It shouldn’t be too difficult up to 500 atoms, then difficulty ramps up. 1000+ atoms will
require considerable resources (≈ 1000+ cores) and patience (weeks). Current record is 1108 atoms (June
2020).

7.10 Can I do LR-TDDFT calculations with HFx?

Yes, but this is at an experimental stage at the moment.

8 Further questions?

General questions should be directed to Jacek Dziedzic, J.Dziedzic[-at-]soton.ac.uk.

Questions relating to the 2Dn-1Da metric matrix evaluation scheme or to hybrid LR-TDDFT should be
directed at James C. Womack, J.C.Womack[-at-]bristol.ac.uk.

References

[1] J. Dziedzic, Q. Hill and C.-K. Skylaris, J. Chem. Phys. 139 214103 (2013).

[2] N.D.M. Hine, J. Dziedzic, P.D. Haynes and C.-K. Skylaris, J. Chem. Phys. 135 204103 (2011).

[3] R. Rein, On Physical Properties and Interactions of Polyatomic Molecules: With Application to Molecular
Recognition in Biology, in Advances in Quantum Chemistry,ed. Per-Olov Löwdin, Academic Press, 1973.

[4] A.J. Stone, Chemical Physics Letters 2 83 233-239 (1981).

[5] A.J. Stone and M. Alderton, Molecular Physics 5 56 (1985).

[6] A.J. Stone, GDMA: distributed multipoles from Gaussian98 wavefunctions (technical report), University
of Cambridge (1998).

[7] A.J. Stone, Journal of Chemical Theory and Computation 6 1128-1132 (2005).

[8] J. Dziedzic, Y. Mao, Y. Shao, J. Ponder, T. Head-Gordon, M. Head-Gordon and C.-K. Skylaris, J. Chem.
Phys. 145 12 124106 (2016).

[9] V. Vitale, J. Dziedzic, S.M.-M. Dubois, H. Fangohr and C.-K. Skylaris, Journal of Chemical Theory and
Computation 11 7 3321-3332 (2015).

18

