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1 Linear Response TDDFT

The linear response TDDFT (LR-TDDFT) functionality in ONETEP allows the
calculation of the low energy excited states of a system in linear scaling effort.
In contrast to time-evolution TDDFT, where the density matrix of the system is
propagated explicitly in time, LR-TDDFT recasts the problem of finding TDDFT
excitation energies into an effective non-hermitian eigenvalue equation of the form:(
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where the elements of the block matrices A and B can be expressed in canonical
Kohn-Sham representation as
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KS
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Bcv,c′v′ = Kcv,v′c′ (3)

Here, c and v denote Kohn-Sham conduction and valence states and K is the coupling
matrix with elements given by
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with Exc being the exchange-correlation energy. Its second derivative, evaluated at
the ground-state density ρ{0} of the system, is normally referred to as the exchange-
correlation kernel.
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The above equation can be understood as an effective 2-particle Hamiltonian con-
sisting of a diagonal part of conduction-valence eigenvalue differences and a coupling
term Kcv,c′v′ connecting individual Kohn-Sham excitations.

In ONETEP, LR-TDDFT is implemented both in terms of the full TDDFT eigen-
value equation (Eqn. 1) and in the Tamm-Dancoff approximation, a commonly used
simplification to the full non-hermitian eigenvalue equation, where the off diago-
nal elements B are set to zero. The problem of calculating the TDDFT excitation
energies thus becomes equivalent to solving the hermitian eigenvalue equation

A~X = ω~X (5)

The Tamm-Dancoff approximation violates time-reversal symmetry and oscillator
strength sum rules and can blue-shift strong peaks in the spectrum by up to 0.3
eV, however, dark states are typically left almost unaltered from their corresponding
states in the Tamm-Dancoff approximation.

In the ONETEP code, the Tamm-Dancoff eigenvalue equation is re-expressed in
terms of two sets of NGWFs, one optimised for the valence space (denoted as {φα})
and one optimised for a low energy subspace of the conduction manifold (denoted as
{χβ}, see the documentation of the conduction NGWF optimiation functionality).
Furthermore, the eigenvalue equation is solved iteratively for the lowest few eigen-
values using a conjugate gradient method. In order to do so we define the action q
of operator A acting ~X in conduction-valence NGWF space as

(qχφ)αβ = (P {c}HχP {1} − P {1}HφP {v})αβ + (P {c}V
{1}χφ
SCF P {v})αβ. (6)

where Hχ and Hφ are the Hamiltonians in conduction and valence NGWF rep-
resentation respectively, P{c} and P{v} denote the conduction and valence density
matrices and P{1} is the response density matrix, a representation of the trial vector
~X in conduction-valence NGWF space. V

{1}
SCF is the first order response of the system

due to the density ρ{1}(r) associated with P{1}. Under this redefinition of the action
A in conduction-valence NGWF space, finding the lowest Nω excitation energies is
equivalent to minimising
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under the constraint
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If all density matrices involved in the above expressions, ie. P{1}, P{c} and P{v}

are truncated and thus become sparse, the algorithm scales as O(N) with system
size for a fixed number of excitation energies Nω and as O(N2

ω) with the number of
excitation energies required.

A similar algorithm can be derived for the full TDDFT eigenvalue equation, where
we make use of the change of variables p = ~X + ~Y and q = ~X− ~Y. Each TDDFT
excitation then has two effective density matrices, P{p} and P{q}, associated with
it that have the same structure as P{1} in the Tamm-Dancoff approximation. The
density matrices do obey an updated orthonormality constraint of the form

1

2

(
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]
+ Tr
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])
= δij (9)

and an analogous expression for the total energy Ω in full TDDFT can be derived.

2 Performing a LR-TDDFT calculation

The LR-TDDFT calculation in ONETEP is enabled by setting the task flag to
TASK=LR TDDFT. The LR-TDDFT calculation mode reads in the density ker-
nels and NGWFs of a converged ground state and conduction state calculation, so
the .dkn, .dkn cond, .tightbox ngwfs and .tightbox ngwfs cond files all need to be
present. The most important keywords in a TDDFT calculation are:

• lr tddft RPA: T/F.
Boolean, default lr tddft RPA=F. If set to T, the code performs a full TDDFT
calculation without relying on the simplified Tamm-Dancoff approximation.

• lr tddft num states: n
Integer, default lr tddft num states = 1.
The keyword specifies how many excitations we want to converge. If set to a
positive integer n, the TDDFT algorithm will converge the n lowest excitations
of the system.

• lr tddft cg threshold: x
Real, default lr tddft cg threshold = 10−6.
The keyword specifies the convergence tolerance on the sum of the n TDDFT
excitation energies. If the sum of excitation energies changes by less than x in
two consecutive iterations, the calculation is taken to be converged.
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• lr tddft maxit cg: n
Integer, default lr tddft maxit cg = 60.
The maximum number of conjugate gradient iterations the algorithm will per-
form.

• lr tddft triplet: T/F
Boolean, default lr tddft triplet = F.
Flag that decides whether the lr tddft num states = n states to be converged
are singlet or triplet states.

• lr tddft write kernels: T/F
Boolean, default lr tddft write kernels = T.
If the flag is set to T, the TDDFT response density kernels are printed out
at every conjugate gradient iteration. These files are necessary to restart a
LR TDDFT calculation.

• lr tddft restart: T/F
Boolean, default lr tddft trestart = F.
If the flag is set to T, the algorithm reads in lr tddft num states = n re-
sponse density kernels in .dkn format and uses them as initial trial vectors for
a restarted LR TDDFT calculation.

• lr tddft restart from TDA: T/F
Boolean, default lr tddft trestart from TDA = F.
If the flag is set to T and lr tddft RPA: T, the code will read in already

converged density kernels
{
P
{1}
i

}
and use them as a starting guess for a full

TDDFT calculation such that P
{p}
i = P

{q}
i = P{1}. In many cases, the full

TDDFT results are similar to the Tamm-Dancoff results and this strategy of
starting the full TDDFT calculation leads to a rapid convergence.

• lr tddft kernel cutoff: x
Real, default lr tddft kernel cutoff = 1000a0.
Keyword sets a truncation radius on all response density kernels in order to
achieve linear scaling computational effort with system size.

While the LR TDDFT calculation can be made to scale linearly for a fixed
number of excitations converged, it should be kept in mind that the algorithm
needs to perform orthonormalisation procedures and thus scales as O(N2) with
lr tddft num states.
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3 Truncation of the Response density matrix

To run a fully linear scaling TDDFT calculation the response density matrix has to
be truncated by setting lr tddft kernel cutoff. This truncation introduces nu-
merical errors into the calculation, which mainly manifest themselves in the form
that the response density matrices do no longer exactly obey a first order idempo-
tency constraint that is placed on them. The idempotency constraint can be written
in form of an invariance equation:

P{1}
′
= P{c}SχP{1}SφP{v} = P{1} (10)

To measure the degree to which the invariance relation is violated we make use of a

penalty functional Q
[
P{1}

]
given by:

Q
[
P{1}

]
= Tr

[(
P{1}†SχP{1}Sφ −P{1}

′†SχP{1}
′
Sφ
)2]

. (11)

For truncated P{1}, Q
[
P{1}

]
6= 0 which can lead to problems in the convergence

of the conjugate gradient algorithm. In order to avoid these issues, the TDDFT
routines perform the minimisation of the energy in an analogous form to the LNV
method in ground-state calculations: The auxiliary density kernel P{1}

′
is used in-

stead of P{1} for the minimisation of Ω. While P{1}
′

is much less sparse than P{1}

it preserves idempotency to the same degree as the conduction and valence density
kernel, yielding a stabilised convergence.

However, should Q
[
P{1}

]
diverge significantly from 0 during the calculation,

there are routines in place similar to the kernel purification schemes in ground state
DFT that force the kernel towards obeying its idempotency constraint. The keyword
controlling these routines are given below:

• lr tddft penalty tol: x
Real, default lr tddft penalty tol = 10−8.

Keyword sets a tolerance for the penalty functional. If Q
[
P{1}

]
is larger than

lr tddft penalty tol the algorithm will perform purification iterations in or-
der to decrease the penalty value and force P{1} towards the correct idempo-
tency behaviour.

• lr tddft maxit pen: n
Integer, default lr tddft maxit pen = 20.
The maximum number purification iterations performed per conjugate gradient
step.
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4 More advanced TDDFT kernel truncation schemes

There are many situations where physical intuition allows one to specify a more so-
phisticated sparsity pattern than a uniform spherical kernel cutoff on P{1} (or P{p}

and P{q} for full TDDFT). For example, in pigment-protein complexes the excita-
tions of interest retain a relative localisation on the pigment and one would ideally
converge these states directly, without obtaining any spurious charge transfer states
from the pigment to far away regions of the protein, that can arise due to failures in
semi-local exchange correlation functionals. This can be achieved by introducing a
new block into the input file of the form

%block species tddft kernel

label1 label 2 label3 ...
label5 ...
...
%endblock species tddft kernel

where the labels refer to atom labels. As an example, consider a pigment protein
complex, where the pigment atoms are labelled H1, C1 etc. while the protein atoms
are labelled H, C, etc. Then we can force the excitations of the system to be fully
localised on the pigment by including

%block species tddft kernel

C1 H1 ...
%endblock species tddft kernel

This has the effect of setting all elements of P{1} to zero that correspond to con-
duction or valence NGWFs centered on atoms of the environment. In this way the
electrostatic effects of the environment are treated fully quantum mechanically, while
no delocalisation into the protein is allowed. If one would like to introduce a coupling
to the environment but wants to suppress any charge transfer coupling between the
pigment and its environment, it is possible to specify

%block species tddft kernel

C1 H1 ...
C H ...
%endblock species tddft kernel
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It is possible to specify an arbitrary number of subregions in the system in this
way. It is also possible to list the same species in different lines, allowing for charge
transfer interactions between some atom types of two regions but not others.

5 Preconditioning

The TDDFT eigenvalue problem is generally ill-conditioned, which can lead to a
relatively slow convergence. For this reason, it is possible to precondition the eigen-
value problem, which is achieved by solving a linear system iteratively to a certain
tolerance at each conjugate gradient step. Solving the linear system only requires
matrix-matrix multiplications and is very cheap for small and medium sized systems,
however, it can get more costly for very large systems, especially when no kernel trun-
cation is used. In these cases, it can be necessary to reduce the number of default
iterations of the preconditioner. The main keywords controlling the preconditioner
are

• lr tddft precond: T/F
Boolean, default lr tddft precond = T.
Flag that decides whether the preconditioner is switched on or off.

• lr tddft precond iter: n
Integer, default lr tddft precond iter = 20.
Maximum number of iterations in the linear system solver applying the pre-
conditioner.

• lr tddft precond tol: x
Real, default lr tddft precond tol = 10−8.
The tolerance to which the linear system is solved in the preconditioner. Choos-
ing a large tolerance means that the preconditioner is only applied approxi-
mately during each iteration.

6 Representation of the unoccupied subspace

In the LR TDDFT method as implemented in ONETEP, the user has two options
regarding the representation of the unoccupied subspace. The first option is to define
the active unoccupied subspace of the calculation to only contain the Kohn-Sham
states that were explicitly optimised in the COND calculation. The other is to
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make use of a projector onto the entire unoccupied subspace, where we redefine the
conduction density matrix as:

P{c} =
(

(Sχ)−1 − (Sχ)−1 SχφP{v}
(
Sχφ
)†

(Sχ)−1
)
. (12)

The first option has the advantage that we only include states for which the NGWFs
are well optimised, but has the drawback that some excitations converge very slowly
with the size of the unoccupied subspace and thus a good convergence with the num-
ber of conduction states optimised is hard to reach. The second method implicitly
includes the entire unoccupied subspace (to the extent that it is representable by a
small, localised NGWF representation), but has the disadvantage that now states
are included in the calculation for which the NGWFs are not optimised. Further-
more, the density matrix defined above is no longer strictly idempotent, leading to
violations of the idempotency condition and thus a non-vanishing penalty functional

Q
[
P{1}

]
, requiring kernel purification iterations as described in the previous section.

The problem of loss of idempotency can be avoided by using the joint NGWF set
to represent the conduction space when using the projector. While this increases the
computational cost of the LR TDDFT calculation by a factor of 2, it preserves the
idempotency of P{c} and is the recommended option when using the projector onto
the unoccupied subspace.

The keywords controlling the use of the projector are

• lr tddft projector: T/F
Boolean, default lr tddft projector = T.
If the flag is set to T, the conduction density matrix P{c} is redefined to be a
projector onto the entire unoccupied subspace.

• lr tddft joint set: T/F
Boolean, default lr tddft joint set = T.
If the flag is set to T, the joint NGWF set is used to represent the conduction
space in the LR TDDFT calculation.

7 Outputs

The LR TDDFT calculation will produce a number of outputs. At the end of the
calculation, the individual excitation energies and oscillator strengths will be com-
puted and printed in the main ONETEP output file. Furthermore, the energies and
oscillator strengths are used to generate a excitation spectrum written to the textfile
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spectrum.dat. The peaks in the spectrum are Lorentzians whose width is defined
by the radiative lifetimes of each excitation. Furthermore, by default, density cube
files of the response density, the electron and the hole density for each excitation
are printed out. The LR TDDFT code can also perform an analysis of individual
excitations, where the response density matrix is decomposed into dominant Kohn-
Sham transitions. Since this analysis requires the Kohn-Sham eigenstates and thus a
diagonalisation of the Hamiltonian, it scales as O(N3) and should not be performed
for very large system sizes.

The keywords controlling these outputs are:

• lr tddft write densities: T/F
Boolean, default lr tddft write densities = T.
If the flag is set to T, the response density, electron density and hole density
for each excitation is computed and written into a .cube file.

• lr tddft analysis: T/F
Boolean, default lr tddft analysis = F.
If the flag is set to T, a full O(N3) analysis of each TDDFT excitation is
performed in which the response density is decomposed into dominant Kohn-
Sham transitions.

8 Good practices and common problems

• The quality of the TDDFT excitation energies critically depends on the repre-
sentation of the conduction space manifold. Any excitation that has a large con-
tribution from an unoccupied state that is not explicitly optimised in the COND
calculation is not expected to be represented correctly in the LR TDDFT cal-
culation. In general it is advisable to optimise as many conduction states as
possible. However, high energy conduction states are often very delocalised and
only representable if the conduction NGWF radius is increased significantly,
thus leading to poor computational efficiency. In practice, there is a trade-
off between computational efficiency and the representation of the conduction
state manifold (see also the documentation on conduction state optimisation on
this issue). Generally, TDDFT excitations should be converged with respect
to both the conduction NGWF radius and the number of conduction states
explicitly optimised.

• Since the ground state and conduction density kernels are used as projectors
onto the occupied and unoccupied subspace in LR TDDFT, one often finds
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that the inner loop of the SINGLEPOINT and COND optimisation has to be
converged to a higher degree of accuracy to achieve well behaved TDDFT re-
sults. It is therefore recommended to increase MAXIT LNV and MINIT LNV
from their default value in the SINGLEPOINT and COND calculation. If no
density kernel cutoff is used, the penalty functional value in the LR TDDFT
calculation should be vanishingly small. If the number increases significantly
during a calculation or if the code begins to perform penalty optimisation steps,
that is a clear sign that the initial conduction and valence density kernels are
not converged well enough.

• In order to perform a LR TDDFT calculation that scales fully linearly with
system size, all density matrices involved have to be sparse and thus a KER-
NEL CUTOFF has to be set for both the SINGLEPOINT and COND calcula-
tion. Using a density matrix truncation on the conduction states can sometimes
be difficult depending on how the subspace of optimised conduction states is
chosen and care has to be taken to prevent unphysical results.

• When running calculations in full linear scaling mode, the ground state and
conduction density kernels are no longer strictly idempotent, which means that
the penalty functional in LR TDDFT will no longer be strictly zero. The code
might perform penalty functional optimisation steps to keep the idempotency
error small. However, these idempotency corrections can cause the conjugate
gradient algorithm to stagnate and can even cause the energy to increase. If
this happens, it is an indication that the minimum energy and maximum level
of convergence for this truncation of the density kernel has been reached.

• When placing a truncation onto the the response density kernels it should be
kept in mind that this may cause the optimisation to miss certain low energy
excitations completely. Very long range charge-transfer type excitations cannot
be represented by a truncated response density kernel and will thus be missing
from the spectrum of excitations converged. However, well localised excitations
should be unaffected. In a similar way, if the TDDFT kernel is limited to a
certain region, it should be checked whether increasing the region leads to a
smooth convergence of the energy of the localised state within the region.

9 Reference

For further background regarding the theory behind the LR TDDFT method in
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