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1 Motivation

In standard onetep the local pseudopotential is obtained in reciprocal space by a discrete

Fourier transform, by assuming the cell is periodically repeated in space. However, there are

certain use-cases, where one is interested in the properties of an isolated (not periodically re-

peated) system. This is especially true if other energy terms, such the Hartree energy or the

ion-ion energy are already calculated with open boundary conditions, which is the case, e.g., for

implicit solvent calculations in onetep.

2 Theory

Assume that vloc (~r) is located on an atom A at a position ~RA and we want to determine

the contribution to the local pseudopotential coming from this atom. Owing to the spherical

symmetry of the potential, we have

vloc,A (~r) = vloc

(

~r − ~RA

)

= vloc

(

|~r − ~RA|
)

. (1)

The local pseudopotential is given to us in terms of its continuous Fourier coefficients,

ṽloc (|~g|), read from a recpot file. To generate the pseudopotential at a point ~r in real space, we

use the continuous Fourier transform:

vloc

(

~r − ~RA

)

=
1

(2π)3

∫

ṽloc (~g) ei~g·(~r−~RA)d~g =

∫

ṽloc (~g) ei~g·~xd~g, (2)

where we have set ~x = ~r − ~RA. Expanding the plane wave ei~g·~x in terms of localised functions,

we get

vloc,A (~r) =
1

(2π)3

∫

ṽloc (~g) ·
[

4π
∞∑

l=0

l∑

m=−l

iljl (gx) Zlm

(
Ω~g

)
Zlm (Ω~x) d~g

]

, (3)

vloc,A (~r) =
1

(2π)3
4π

∞∑

l=0

l∑

m=−l

ilZlm (Ω~x)

∫

ṽloc (~g) jl (gx) Zlm

(
Ω~g

)
d~g

︸ ︷︷ ︸

I1

. (4)
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The orthogonality of harmonics means that all of the terms, except for that of l = m = 0,

disappear and, after a change of coordinates (g2 sin θ being the Jacobian), we obtain a new

expression for the integral in (4):

I1 =

2π∫

0

π∫

0

Zlm

(
Ω~g

)
Z00 sin θ dθ dϕ ·

∞∫

0

ṽloc (g) jl (gx) g2dg. (5)

With Z00 = 1/
√

4π, the double integral simplifies to 1 and we obtain, after realizing that all

terms except for l = 0 disappear,

vloc,A (~r) =
1

(2π)3
4π

∫

ṽloc (g) j0(gx) g2dg =
1

(2π)3
4π

∫

ṽloc (g)
sin (gx)

gx
g2 dg. (6)

onetep uses a convention where an additional factor of 4π is needed when transforming

between real and reciprocal space. Thus the final formula for the local pseudopotential at a

distance of x from an atom of species s becomes

vs
loc (x) =

2

π

∞∫

0

ṽs
loc (g)

sin (gx)

x
g dg. (7)

3 Implementation

In practice, however, it is not possible to evaluate the integral (7) with ∞ as the upper limit,

because ṽs
loc (g) is defined in the recpot file only up to a gmax of 100 Å−1. Furthermore, to ensure

the results are consistent with standard onetep, we must lower this limit even more, to prevent

aliasing, as high g’s will not be representable on our reciprocal space grid. Thus, in practice we

evaluate

vs
loc (x) =

2

π

gcut∫

0

ṽs
loc (g)

sin (gx)

x
g dg, (8)

where gcut = 2π max (d1, d2, d3) (di being the grid spacings of pub cell) and will usually be in

the order of 20-30 a−1
0 .

The integral is evaluated for x’s on a fine radial grid running from 0 to the maximum possible

distance, which is the magnitude of the cell diagonal. The calculation is distributed across nodes

(each node deals with a portion of the fine radial grid). The total pseudopotential for any point

on the real space fine grid is evaluated by interpolation from the fine radial grid and by summing

over all atoms. This calculation is distributed across nodes as well (each node deals with its own

slabs of the real space fine grid). The default number of points in the radial grid is 100000 and

can be changed with the directive openbc pspot finetune nptsx.

The integral (8) is difficult to evaluate numerically. One source of difficulties is the oscillatory

nature of sin (gx). For larger cells, where the maximum interesting x is in the order of 100a0,

this oscillates so rapidly that the resolution of the recpot file (0.05 Å−1) is not enough and it

becomes necessary to interpolate ṽs
loc (g), and the whole integrand, between the g-points specified

in the recpot file. The result of the interpolation is stored on a fine radial g-grid, which is f

times as fine as the original radial g-grid of the recpot file. f is determined automatically so

that every full period of sin (gx) is sampled by at least 50 points. For typical cells, this yields f

in the order of 5-50, depending on the cell size. Alternatively, f may be specified manually by

the openbc pspot finetune f directive.
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Another difficulty is caused by the singularity in ṽs
loc (g) as g → 0, where the behaviour of

ṽs
loc (g) approaches that of −Zs/g

2. Although the integral is convergent, this singularity cannot

be numerically integrated in an accurate fashion. The singularity also presents problems when in-

terpolating between the g points – the usual cubic interpolation of services 1d interpolation

becomes inaccurate at low g’s. The second problem is solved by subtracting the Coulombic po-

tential, −Zs/g
2, before interpolation to the fine radial g-grid and then adding it back. The first

problem is difficult to treat. An approach where at low g’s ṽs
loc (g) is assumed to be exactly equal

to −Zs/g
2 (which allows the low-g part of integral (8) to be evaluated analytically) gives better

results than attempting to numerically integrate the singularity, but is not accurate enough,

leading to errors in the order of 50− 100µHa in the energy for a hydrogen atom test-case (with

a total energy of ca. 0.477 Ha. Attempting to fit A/g2 + B/g + C (which also allows analyt-

ical integration at low g’s) gives similar results. The numerical inaccuracy presents itself as a

near-constant shift of the obtained pseudopotential and clearly affects total energy.

To solve this problem, we observe that the local pseudopotential can be split into a long-range

part and a short-range part:

vs
loc (x) = v

s(long)
loc (x) + v

s(short)
loc (x) , (9)

ṽs
loc (g) = ṽ

s(long)
loc (g) + ṽ

s(short)
loc (g) . (10)

Following [1], we observe that ṽ
s(long)
loc (g) = 4π

g2 exp
(
−g2

4α2

)

(where α is an adjustable parame-

ter, controllable with openbc pspot finetune alpha) which easily transforms to real space to

give v
s(long)
loc (x) = − erf (αx)

x
and is conveniently calculated in real space. The short-range part

(corresponding to high g’s) is ṽ
s(long)
loc (g) = ṽs

loc (g) ·
[

1 − exp
(
−g2

4α2

)]

. In this way, the integral

(8) can be rewritten as

vs
loc (x) = −erf (αx)

x
+

2

π

gcut∫

0

ṽs
loc (g) ·

[

1 − exp

(−g2

4α2

)]

· sin (gx)

x
g dg

︸ ︷︷ ︸

Is(x)

. (11)

Owing to the
[

1 − exp
(
−g2

4α2

)]

factor, the integral Is(x) is no longer singular at g = 0 and can

be accurately evaluated numerically, if α is large enough. Small values of α make the numerical

integration more difficult (requiring larger values for f), because the oscillations at low g’s are

large in magnitude. Larger values of α allow for easy integration, but they cause the long-range

behaviour to “kick in” earlier. As this long-range behaviour is calculated in real space, it lacks

the oscillations that are present in standard onetep because of a finite value for gcut. Even

though these oscillations are an artifact, obtaining a long-range behaviour that is physically more

correct, but without the oscillations, leads to aliasing in reciprocal space and to a departure from

the results of standard onetep. For this reason we want α to be as small as possible, without

negatively impacting the numerical integration. The accuracy of the obtained method can be

judged by comparing the real space tail of the obtained pseudopotential with the Coulombic

potential. Since we expect the obtained pseudopotential to oscillate slightly around −Zs/x, a

good measure of accuracy, which we will call b, is the average value of
vs
loc (x) − (−Zs/x)

−Zs/x
over

the tail of the pseudopotential, from, say, 5 a0 to the maximum x for which vs
loc (x) is evaluated.

Ideally, b should be zero. Numerical inaccuracies will cause a shift in vs
loc (x) which will present

itself as a finite, non-zero value of b. Näıve numerical integration by a direct calculation of (8)

led, for our test-case, to b in the order of 0.01, which can be reduced by an order of magnitude
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by using a very fine radial g-grid (high value of f). Subtracting out the Coulombic potential

and integrating only the difference between ṽs
loc (g) and the Coulombic potential numerically,

while integrating the remaining part analytically reduced b to about 0.0005. Application of the

proposed formula (11) yielded b = 5 · 10−8 for α = 0.5/l and b = 3 · 10−9 for α = 0.1/l with

a suitably large f to ease the numerical integration at low g (l is the box length). With the

default value for f , the total energy is not sensitive (to more than 0.0001%) to the choice of α,

provided it is in a resonable range of 0.1/l − 2/l. The value of 0.3/l was chosen as a default.

The calculation of the realspace local pseudo is implemented in norm conserv pseudo.F90

in the subroutine pseudo local on grid openbc and its internal subroutine internal Is of x,

which evaluates Is(x). A typical calculation would use default values for all the parameters.

The realspace local pseudo is off by default and is turned on automatically when smeared ions

or implicit solvent is in use. It can also be forced to be on (for development tests) by using

openbc pspot T.

Table 1: Directives controlling the calculation of the realspace local pseudo
Directive Action Rationale for use

openbc pspot T

Forces the realspace pseudo

to be used

Normally not needed, the realspace

pseudo will be turned on when neces-

sary. This directive allows turning it

on even though the Hartree potential

calculation and Ewald calculation pro-

ceed in reciprocal space, which might

be useful for certain test calculations.

A related directive, openbc ion ion T

may be used in conjuction, to replace

Ewald with a direct Coulombic sum.

openbc pspot finetune f value

value is an integer.

Sets the fineness parameter,

f , to value.

Default value of -1 causes f to be deter-

mined automatically. Positive values

can be used to increase f to obtain ex-

tra accuracy. Decreasing f will reduce

accuracy and is not recommended.

openbc pspot finetune nptsx value

value is an integer.

Sets the number of radial

grid points (distinct values

of x) to value.

The default of 100000 should be

enough, unless huge boxes are used,

where it might make sense to increase

it. Decreasing this value is not recom-

mended, as it will impact accuracy.

openbc pspot finetune alpha value

value is a real.

Sets the short-range-long-

range crossover parameter α

to value/l, where l is the

maximum dimension of the

cell.

A default value of 0.3 should be OK for

most applications. Increasing α will re-

duce the numerical inaccuracy in Is(x),

but will cause the long-range behaviour

to lack the oscillations of usual onetep

and thus increase aliasing. Decreasing

α will make Is(x) inaccurate, which can

be helped, to a certain extent, by in-

creasing f .
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