
Starting with ONETEP

Arihant Bhandari1, Rebecca J. Clements1 and Jacek Dziedzic1

1University of Southampton

April 12, 2022

Obtaining a copy of ONETEP

If you are a collaborator of one of the members of the onetep Developers Group (ODG),

you should have received a tarball of a personalised onetep copy once you have signed

an academic licence agreement. Create a new directory, unpack the tarball there, and

you’re done.

If you plan to be a onetep contributor, you will be using the official onetep

Bitbucket repository, located at https://bitbucket.org/onetep/onetep. Create a

Bitbucket account with your university email address. Contact your supervisor and ask

to be added to the Contributors group in the onetep project to get access to the

repository. Read the relevant sections of the contributing document, found at https:

//bitbucket.org/onetep/onetep/src/master/CONTRIBUTING.markdown. Follow the

instructions there to create your own private fork of the main onetep repository. There

you will also find details of how to contribute any developments you make to the onetep

code in the future.

Once you have a private fork of onetep on Bitbucket, you can make a copy of

your onetep repository on your local machine, using git clone. Make sure you have

git installed on your computer. From your chosen directory, use one of the following

commands, which can also be copied from the Bitbucket website, by clicking clone at

the top of your repository webpage:

git clone https://<username>@bitbucket.org/<username>/<repo-name>.git or

git clone git@bitbucket.org:<username>/<repo-name>.git

and type in your Bitbucket (app) password (see next section for more detail on app

passwords). Substitute <username> and <repo-name> in the above commands with

your username and the name of your private fork, respectively.

1

https://bitbucket.org/onetep/onetep
https://bitbucket.org/onetep/onetep/src/master/CONTRIBUTING.markdown
https://bitbucket.org/onetep/onetep/src/master/CONTRIBUTING.markdown


Bitbucket app password

Starting March 2022 Bitbucket will require you to create an app password for accessing

the repository through git. This is a distinct password from the one you use to access

the Bitbucket web interface, it will only be used for accessing the repository through

git – the two passwords are not interchangeable.

If you haven’t generated an app password for git yet, follow the instructions at

https://support.atlassian.com/bitbucket-cloud/docs/app-passwords, and the

Create an app password section specifically. Read the instructions carefully. Copy the

generated password to a safe place.

Once the password has been generated, use it every time git prompts you for a

password when you are accessing the onetep Bitbucket repository. If you find typing

or pasting the password cumbersome, go to your local repository clone and, from the

command line, issue the following command:

git config credential.helper store

The next time you are prompted for a password will be the last time – git will store it

for you.

Changes to your copy of ONETEP

Any changes to the code should be made in your local clone. Once you are satisfied

with them, you can commit them, and push them to your private fork. If you want

them to become a part of official onetep, you should then create a pull request from

your private fork to the official respository. Details are described in the contributing

document, under Creating a pull request.

Whether you are a contributor or a user, you might want to update your repository

with any latest changes that might have occurred in the official repository. Users might

be interested in recent bug fixes or new functionality, contributors will want to update

their copy before committing any changes of their own. The procedure for keeping your

repository up to date with the official repository is described under Development within

a fork in the contributing document.

Compiling, testing and running ONETEP

Instructions for setting the environment prior to compiling onetep, instructions on

how to compile onetep, how to run quality-check (”QC”) tests that will give you

confidence in the robustness of your installation are provided separately – look in the

hpc resources directory of your onetep installation. There you will also find instruc-

tions on how to submit jobs on specific HPC facilities.

2

https://support.atlassian.com/bitbucket-cloud/docs/app-passwords


Creating input files

Go to onetep’s website, onetep.org. Here you will find the Tutorials section, which

introduces running various kinds of onetep calculations. Take a look at some of the

input files at the bottom of the page. Input files in onetep have the .dat file extension.

Should any files get downloaded having a .txt extension, you will need to rename them

to end with .dat.

Input files contain keywords, instructing onetep on what calculations to run, and

to set the parameters needed to run them. Check out the keywords on the webpage

onetep.org/Main/Keywords to see what they mean. If not specified, most of them

have default settings, as listed on the webpage.

The keywords come in different types: logical, integer, real, text, physical

and block. Keywords of the type logical can have a value of T (true) or F (false).

Keywords that are integer and real are numbers. Keywords of type text are a string

of characters (for example a filename). Keywords of the type physical refer to physical

variables, which come with units such as angstroem, bohr, joule, hartree, etc. A block

indicates more than one line of input, these are often used for specifying coordinates.

Some of the important keywords to get started are:

• task – to choose what main calculation you would like onetep to perform, e.g.

a single point energy calculation or geometry optimisation. You can run a prop-

erties calculation this way, using output files generated from a single point energy

calculation or using task singlepoint and a separate keyword do properties

set to T.

• xc functional – to choose how to approximate the exchange-correlation term in

the Kohn Sham DFT energy expression.

• %block lattice cart – to define the dimensions of the simulation cell.

• %block positions abs – to define the atomic positions in Cartesian coordinates.

As can be seen from the example input files, all block keywords must end with

a corresponding endblock. Be default all coordinates are in atomic units (bohr). To

switch to angstroems, add ang in the first line of the block:

%block positions abs

ang

C 16.521413 15.320039 23.535776

O 16.498729 15.308934 24.717249

...

%endblock positions abs

3

onetep.org
onetep.org/Main/Keywords


The species and species pot blocks detail the parameters of the atoms. Non-

orthogonal Generalised Wannier Functions (NGWFs) are used to model the atomic

orbitals. In the species block, the name we give to each type atom in the system

is given first, followed by the element of the atom, its atomic number, the number of

NGWFs to use (use -1 for an educated guess) and the radius of each NGWF typically

around 8.0-10.0 (in bohr) for an accurate calculation. For instance for carbon you might

use:

C C 6 4 8.0

The species pot block specifies the location of the pseudopotential used for each ele-

ment of the system. The standard onetep norm-conserving pseudopotentials (.recpot

files) exclude core electrons. Core electrons are included in .paw files. Some of

these can be found in your repository’s pseudo directory. A complete database of

all pseudopotentials for all elements in the .paw format can be downloaded from

https://www.physics.rutgers.edu/gbrv/all_pbe_paw_v1.5.tar.gz

To continue a calculation if it has run out of computation time, use the keywords

below. The original input must have the write keywords, but no read keywords

because the files aren’t available to read at this stage. Any continuing input files must

include the read keywords. If the input file name isn’t changed upon continuation, the

output file will be overwrite with the results of the continuation, so make sure to back

up files before continuing.

write denskern T

write tightbox ngwfs T

read denskern T

read tightbox ngwfs T

If you are running an ensemble DFT (EDFT) calculation you will also need to add

write hamiltonian T

read hamiltonian T

to the above list.

Running ONETEP in parallel environments

onetep is typically run on more than one CPU core – whether on a desktop computer,

or at a high-performance computing (HPC) facility. This is termed parallel operation.

There are two main modes of parallel operation – distributed-memory computing (some-

times termed simply parallelism), and shared-memory computing (sometimes termed

concurrency). onetep combines both of them, so it will be crucial to understand how

they work.

4

https://www.physics.rutgers.edu/gbrv/all_pbe_paw_v1.5.tar.gz


Distributed-memory parallelism (MPI)

In this scenario a collection of individual processes (that is, running instances of a

program) work together on the same calculation. The processes can all reside on the

same physical machine (often termed node) – e.g. when you run them on your many-

core desktop machine – or on separate machines (nodes) – e.g. when you run them at

an HPC facility.

In both cases processes reside in separate memory spaces, which is a fancy way of

saying they do not share memory – each of them gets a chunk of memory and they don’t

know what the other processes have in their chunks. Yes, even when they are on the

same machine.

The problem they work on has to be somehow subdivided between them – this is

known as parallel decomposition. One common way of doing that – and one that onetep

employs – is data decomposition, where it’s the data in the problem that is subdivided

across processes. In onetep the grids on which quantities like electronic density or

external potential are calculated are divided across processes, with each process “own-

ing” a slab of the grid. Similarly, the atoms in the system are divided across processes,

with each process “owning” a subset of atoms. Both of these concepts are illustrated in

Fig. 1.

Figure 1: Illustration of parallel data decomposition in onetep. Figure borrowed from

J. Chem. Phys. 122, 084119 (2005), https://doi.org/10.1063/1.1839852, which you

are well-advised to read.

From the point of view of the operating system, the processes running on a machine

5

https://doi.org/10.1063/1.1839852


are separate entities (see Fig. 3), and collaboration between them almost always neces-

sitates some form of communication (because, remember, they do not share memory) –

e.g. process #1 may need to ask process #2 “what are the positions of your atoms?”

This is accomplished by a dedicated software library known as Message Passing Inter-

face (MPI). This is why we often call the processes MPI processes, or, more technically,

MPI ranks.

Figure 2: Four onetep processes running on one machine, each utilising 100 % of a CPU

core and 0.4 % of available memory.

MPI facilitates starting multiple processes as part of a single calculation, which can

become slightly tricky when there are multiple machines (nodes) involved. Your MPI

installation will provide a dedicated command for running multiple processes. The com-

mand is often called mpirun, aprun, gerun, srun or something similar (it will certainly

be stated in the documentation for your system). On a desktop machine its invocation

typically looks like this:

mpirun -np 4 ./onetep launcher input.dat >input.out 2>input.err

Here, mpirun is the name of the command for launching multiple processes, -np 4

asks for four processes, onetep launcher is the name of the script for launching onetep

– it’s the script that will actually be run on four CPU cores, and each instance will

start one onetep process for you – here we assume it’s in the current directory (./),

input.dat is your onetep input file. Output will be sent (“redirected”) to onetep.out,

and error messages (if any), will be redirected to input.err. All four processes will be

started on the same machine.

In HPC environments the syntax will be slightly different, because the number of

processes will be automatically inferred by the batch (queueing) system, the batch

system will also take care of instructing mpirun (or equivalent) what machines to put

the processes on.

MPI lets you run your calculation on as many processes as you like – even tens of

thousands. However, there are practical limitations to how far you can go with onetep.

Looking at Fig. 1 it becomes clear that you cannot have more MPI processes than atoms

– or some processes would be left without work to do. In fact this limitation is even

slightly stricter – to divide work more evenly onetep tries to give each processes a

similar number of NGWFs, not atoms. For instance, for a water molecule run on two

6



processes, it makes sense to assign the O atom and its 4 NGWFs to one process, and

both H atoms (1 NGWF each) to the second process. If you try to run a calculation on

H2O on three processes, it’s very likely that onetep will do the same thing – assign O

to one processes, both H’s to another process and the third process will wind up with

no atoms. This will cause the calculation to abort. So, one limitation is you will not

be able to use more MPI processes that you have atoms in your system,

and even slightly smaller numbers of MPI processes might not work. Even if

they do, you don’t really want that, because load balancing will be rather poor – the

processor that gets the O atom has roughly twice as much work to do as the one that

gets the two H atoms. The bottom line is – you should have at least several atoms per

MPI rank – in the interest of efficiency.

Shared-memory parallelism (OMP)

This approach, sometimes known as concurrency, concurrent processing or colloquially

as threads, uses shared memory. The way it works is a process spawns (starts) a number

of threads of execution, with each thread delegated to a separate CPU core. Typically

each thread works with a subset of data, and, in contrast to processes, threads within

the same process can access each other’s memory. For example, if a process was given 50

atoms to work with, it can spawn 4 threads and tell each thread to work on 12-13 atoms.

Because threads share memory, they do not need special mechanisms to communicate

– they can just use memory for this. What they need instead are special mechanisms

for synchronisation – e.g. so that thread 1 knows thread 2 finished writing something to

memory and it’s safe to try to read it. These mechanisms are described by a standard

known as OpenMP, or OMP for short.

In onetep threads are most conveniently handled using the launcher’s -t option,

which instructs it how many threads each process should spawn. For instance the

command

./onetep launcher -t 8 input.dat >input.out 2>input.err

runs one process (note the absence of mpirun), which spawns eight threads. This is

what it looks like to the operating system:

Figure 3: One onetep process that spawned eight threads, running on one machine,

utilising almost 800 % of a CPU core and 1.3 % of available memory – this is for the

entire process encompassing eight threads.

7



Thread-based processing has a number of limitations. As threads reside within a

process, you cannot feasibly run more threads than you have CPU cores on a node – in

other words, threading is limited to a single node. Moreover, large numbers of threads

quickly become inefficient. If a processes owns 10 atoms, using more than 10 threads

will not give you any advantage, because the additional threads will not have anything

to work with (fortunately, this does not lead to the calculation aborting, only to some

threads idling). Even with four threads you will lose some efficiency, because some

threads will get 3 atoms and some only 2. onetep works best with about 4-6 threads,

unless you are using Hartree-Fock exchange (HFx), which is the most efficient on large

thread counts.

Threads are easiest to control via onetep launcher, which you are advised to

use, but onetep also provides keywords for controlling them manually – these

are threads max, threads per fftbox, threads num fftboxes, threads per cellfft

and threads num mkl. Each of these sets the number of threads spawned from a single

process for some part of onetep’s functionality. This is advanced stuff and will not be

covered in this beginners’ document.

Another point to note is that each thread requires its own stack (a region of memory

for intermediate data) in addition to the global (per-process) stack. This per-thread

stack needs to be large enough – almost always 64 MB suffices. So, if you spawn 16

threads from a process, that’s an extra 1024 MB of memory that you need, per process.

If you use onetep launcher, it takes care of setting this stack for you. If you don’t –

you’ll need to take care of this on your own (by exporting a suitable OMP STACKSIZE) or

you risk ugly crashes when the stack runs out. Not recommended.

Hybrid (combined MPI+OMP) parallelism

For anything but the smallest of systems, combining MPI processes with OMP threads

is the most efficient approach. This is known as hybrid parallelism. In onetep this is

realised simply by combining mpirun (or equivalent) with onetep launcher’s -t option,

like this:

mpirun -np 4 ./onetep launcher -t 8 input.dat >input.out 2>input.err

Here we are starting 4 processes, each of which spawns 8 threads. This set-up would

fully saturate a large, 32-core desktop machine.

Setting up processes and threads looks slightly different in HPC systems, where

you need to start them on separate nodes. Your submission script (you will find ones

for common architectures in the hpc resources directory of your onetep installation)

defines all the parameters at the top of the script and then accordingly invokes mpirun

(or equivalent) and onetep launcher. Look at the beginning of the script to see what

I mean.

8



How many nodes, processes and threads should I use?

There are a few points worth considering here. First of all, efficiency almost universally

decreases with the number of CPU cores assigned to a problem. That is to say, throwing

100 cores at a problem is likely to reduce the time to solution by less than 100-fold.

This is because of communication overheads, load imbalance and small sections of the

algorithm that remain sequential, and is formally known as Amdahl’s law. It’s worth

keeping this in mind if you have a large number of calculations to perform (known as task

farming) – if you have 1000 calculations to perform, and have 500 CPU cores at your

disposal, time to solution will be the shortest if you run 500 1-core jobs first, followed

by 500 1-core jobs next. If you opt for running a job on 500 CPU cores simultaneously,

and do this for 1000 jobs in sequence, your time to solution will be much, much worse,

because of efficiency diminishing with the number of cores.

Having said that, task farming is not the only scenario in the world. Sometimes you

have few jobs, or only one, that you want to run quickly. Here, you’re not overly worried

about efficiency – if running the job on 1 CPU core takes a month, and using 100 CPU

cores reduces it to a day, you’d still take 100 CPU cores, or even more. You just have

to remember that the returns will be diminishing with each CPU core you add1.

The remaining points can be summarised as follows:

1. Avoid using 1-2 atoms per MPI process, unless there’s no other way. Try to have

at least several atoms per MPI process – for good load-balancing.

2. For OMP threads the sweet spot is typically 4-5 threads. If you have a giant

system, so that you have a hundred atoms or more per MPI process, you might be

better off using 2 threads or even 1 (using purely distributed-memory parallelism).

This is because load balancing will be very good with high numbers of atoms per

MPI process. If you have a small system, or if already using large numbers of

MPI processes, so that you wind up with very few atoms per MPI process (say,

below 5), you might find that using higher numbers of threads (say, 8) to reduce

the number of MPI processes is beneficial.

3. Know how many CPU cores you have on a node. Make sure the number of MPI

processes per node and OMP threads per process saturate all the node’s cores.

For instance, if you have 40 CPU cores on a node, you should aim for 10 processes

per node, 4 threads each; or 20 processes per node, 2 threads each; or 40 processes

per node, 1 thread each; or 4 processes per node, 10 threads each. 2 processes per

node with 20 threads each would also work, but would likely be suboptimal. Just

don’t do things like 3 processes with 10 threads, because then you leave 10 CPU

cores idle, and don’t do things like 6 processes with 10 threads, because you then

oversubscribe the node (meaning you have more threads than CPU cores) – this

degrades performance.

1Hartree-Fock exchange calculations being an important exception

9

https://en.wikipedia.org/wiki/Amdahl%27s_law


4. Nodes are often divided internally into NUMA regions – most often there are two

NUMA regions per node. The only thing you need to know about NUMA regions

is that you don’t want a process to span across them. This is why in the example

above you did not see 5 processes with 8 OMP threads each or 8 processes with 5

OMP threads each – I assumed there are two NUMA regions with 20 CPU cores

each. In both examples here you would have a process spanning across two NUMA

regions. It works, but is much slower.

5. Points 1-3 above do not apply to Hartree-Fock exchange calculations. Point 4

applies. When doing HFx calculations (this includes calculations with hybrid

exchange-correlation functionals, like B3LYP) follow the more detailed instruc-

tions in the HFx manual.

6. If you find that your calculation is running out of memory, your first step should

be to increase the number of nodes (because it splits the problem across a set-up

with more total RAM). Another idea is to shift the MPI/OMP balance towards

more threads and fewer MPI processes (because this reduces the number of buffers

for communication between MPI processes). So if your job runs out of memory

on 2 nodes with 10 processes on each and with 4 threads per process, give it 4

or more nodes with 10 processes on each with 4 threads per each, or switch to 4

processes with 10 OMP threads.

10


