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The origin of the O(N3) problem

• Physicists:
– Typically employ large basis sets of simple functions 

e.g. plane waves
– Computational effort dominated by FFTs
– Asymptotic N3 scaling from orthogonality constraint
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The origin of the O(N3) problem

• Physicists:
– Typically employ large basis sets of simple functions 

e.g. plane waves
– Computational effort dominated by FFTs
– Asymptotic N3 scaling from orthogonality constraint

• Chemists:
– Typically employ small basis sets of more complicated 

functions e.g. contracted Gaussians
– Computational effort dominated by building the Fock

matrix
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Simplifications

• No self-consistency
• No spin
• Sample Brillouin zone at Γ only
• (Localised) orthogonal basis set
• M basis functions → H is M x M matrix

→ full diagonalization O(M3)
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Simplifications

• No self-consistency
• No spin
• Sample Brillouin zone at Γ only
• (Localised) orthogonal basis set
• M basis functions → H is M x M matrix
• N lowest states required
→ iterative diagonalization O(N2M)
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Total energy methods

• Energy of the Kohn-Sham system:
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• Energy of the Kohn-Sham system:

• Introduce occupation numbers  fn:
– 1 for occupied states
– 0 for unoccupied states
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• Energy of the Kohn-Sham system:

• Introduce occupation numbers  fn:
– 1 for occupied states
– 0 for unoccupied states

• Finite temperature:

Total energy methods
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• Energy of the Kohn-Sham system:

Total energy methods
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• Trace is invariant under similarity transformation:

Off-diagonal representation
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Density matrix

• F is the density matrix
– F commutes with H (simultaneously diagonalizable)
– Trace of F is the number of electrons (sum of 

occupation numbers)
– At zero temperature F is idempotent: F2 = F

• Solving the Schrödinger equation is equivalent to 
finding the F that minimizes E subject to the 
above conditions
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Nearsightedness

Hierse & Stechel, Phys. Rev. B 50, 17811 (1994)
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Nearsightedness
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Nearsightedness

• Implication for the density matrix:
– In a local representation it is sparse
– i.e. Fij ≈ 0 for distant basis functions fi and fj
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Nearsightedness

• Implication for the density matrix:
– In a local representation it is sparse
– i.e. Fij ≈ 0 for distant basis functions fi and fj

• In fact the density matrix decays exponentially: 
Brouder et al., Phys. Rev. Lett. 98, 046402 (2007)
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Nearsightedness

• Implication for the density matrix:
– In a local representation it is sparse
– i.e. Fij ≈ 0 for distant basis functions fi and fj

• In fact the density matrix decays exponentially: 
Brouder et al., Phys. Rev. Lett. 98, 046402 (2007)

• Decay rate depends upon
– Band gap
– Basis quality
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Divide and conquer

Yang, Phys. Rev. Lett. 66, 1438 (1991)
Yang & Lee, J. Chem. Phys. 103, 5674 (1995)
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Divide and conquer

• Consider subvolumes of the whole system
• Calculate contributions to the density (matrix)

sam
e μ
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Divide and conquer

• Trim the corners:
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Divide and conquer

• Combine the pieces:

weight 1

weight ½

ONETEP Master Class



Fermi operator expansion

Goedecker & Colombo, Phys. Rev. Lett. 73, 122 (1994)
Goedecker & Teter, Phys. Rev. B 51, 9455 (1995)
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Compatibility

• Need to find F that commutes with H
• Any matrix M always commutes with:
– The identity I
– Itself i.e. M
– Any power of itself e.g. M 2, M 3 etc.
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Compatibility

• Need to find F that commutes with H
• Any matrix M always commutes with:
– The identity I
– Itself i.e. M
– Any power of itself e.g. M 2, M 3 etc.

• Expand F as a polynomial in H i.e.

– Coefficients are those from a power series expansion 
of the Fermi-Dirac distribution
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Chebyshev polynomials

• Defined on [-1,1]
• Bounded between ±1
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Chebyshev polynomials
Press et al., N

um
erical Recipes, 

Cam
bridge U

niversity Press 
(1986-92) 
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Chebyshev expansion

• Scale and shift the Hamiltonian so eigenvalues lie 
on [-1,1]:
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Fermi operator expansion

• Region over which expansion changes from 0 to 1 
is the energy resolution De (gap)

• Smaller energy resolution requires higher order 
expansion

• Use finite temperature distribution to avoid 
Gibbs oscillation

• In practice use error functions instead (decay 
faster to 0 and 1 away from gap)

• Rational expansion also possible
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Density matrix minimization

McWeeny, Rev. Mod. Phys. 32, 335 (1960)

Li, Nunes & Vanderbilt, Phys. Rev. B 47, 10891 (1993)

Daw, Phys. Rev. B 47, 10895 (1993)
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Purifying transformation
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Purifying transformation
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Purifying transformation

• Apply it to the density matrix: 

• Iteration converges to 0 or 1 as long as:

• Converges without “flipping” if:
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Canonical purification

• Start with Hamiltonian
• Shift, invert and scale so 

eigenvalues lie in [0,1]
• Apply purification 

transformation until 
convergence achieved

Palser & Manolopoulos, Phys. Rev. B 58, 12704 (1998)
H
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Li-Nunes-Vanderbilt

• Define a purified density matrix P

• Minimize E = tr(PH) with respect to F

• Truncate F to obtain linear scaling
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Li-Nunes-Vanderbilt
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Goedecker, Rev. M
od. Phys.71, 

1085 (1999)



Orbital minimization
Mauri et al., Phys. Rev. B 47, 9973 (1993)
Ordejón et al., Phys. Rev. B 48, 14646 (1993)
Mauri & Galli, Phys. Rev. B 50, 4316 (1994)
Ordejón et al., Phys. Rev. B 51, 1456 (1995)
Kim et al., Phys. Rev. B 52, 1640 (1995)
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Orbital minimization

• Works with Wannier functions rather than 
density matrix

• Imposes the orthogonality constraint by 
expanding the inverse overlap matrix about the 
identity:
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Orbital minimization

• Leads to a generalized functional:

– where

• Quartic in the coefficients c
• Solve for localized orbitals to obtain linear scaling
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Orbital minimization
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Orbital minimization

• With localization constraints:
– Large number of iterations required
– Atom-centred Wannier functions can break symmetry
– Local minimum so runaway solutions possible
– Problems conserving electron number

Yang, Phys. Rev. B 56, 9294 (1997)
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More information

Stefan Goedecker
“Linear scaling electronic structure methods”

Rev. Mod. Phys. 71, 1085 (1999)

David Bowler and Tsuyoshi Miyazaki
“O(N) methods in electronic structure calculations”

Rep. Prog. Phys. 75, 036503 (2012)
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