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The impact and challenge of DFT The impact and challenge of DFT

	
	
	
	
	
	
	
	

	
	

	

•  Density-functional theory is almost ubiquitous in 
quantum molecular & materials simulation.!

•  Of the 100 most cited papers in any field during 
1900-2014, 12 pertain to DFT (2 are in the top 10). 
For details, see Nature 514, 550 (2014). !

!
!
!
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Quantifying	systematic	errors	in	DFT

Origins of SCE
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Ø  J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Phys. Rev. Lett. 49, 1691 (1982)!
Ø A.J.Cohen,P.Mori-Sanchez,and W.Yang, J. Chem. Phys. 129, 121104 (2008) !
Ø A. J. Cohen, P. Mori-Sanchez, and W. Yang, Science 321, 792 (2008) !
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– W.	E.	Pickett,	S.	C.	Irwin,	and	E.	C.	
Ethridge,	Phys.	Rev.	B.	58,	1202	(1998).

– A.	J.	Cohen,	P.	Mori-Sánchez,	and	W.	
Yang,	J.	Chem.	Phys.	129,	121104	(2008).The lowest energy, however, corresponds to the ground state

structure, and paths between minima are essential to studies of
chemical reactions, including their activation energies. The
observation of Francis Crick in his autobiography (Crick,
1990, p. 150): “If you want to study function, study structure”
may be self-evident to anyone interested in biology or molecules
in general, but it is true in other areas. TheDFapproach allows us
to calculate EðRIÞ and hence the structure and many related
properties, without using experimental input.
Olle Gunnarsson and I reviewed the DF formalism, its

history, and its prospects in 1989 (Jones and Gunnarsson,
1989). A careful reading of the original literature some years
ago suggested an alternative approach, and I trace here the DF
history from the first years after the development of quantum
mechanics. It is a fascinating story with many players, and I
quote in several places from the original texts.
Density functional calculations are now well established in

condensed matter physics and chemistry,1 but they did not (and
do not) find universal acceptance. The choice of 1990 as fixed
point coincides with the publication of the review of Jones and
Gunnarsson (1989), the book of Parr and Yang (1989), and an
article (Jones, 1991) advocating DF calculations for molecules,
particularly when combined with molecular dynamics (MD)
(Car and Parrinello, 1985). Figure 1 (Mavropoulos, 2015)
shows that it also marks the dramatic increase in the number of
publications on the topics “density functional” and density
functional theory “(DFT)” in recent years.2 The relatively small
number of publications before 19903 by no means implies that

important work was not being carried out. Many applications
that today would be denoted “density functional” then used
other designations.
In this article, I revisit the period before 1990 [some

aspects of which are covered in detail by Parr and Yang
(1989)] and focus on developments since then. Perspectives
on density functional theory have been given by Burke
(2012) and Becke (2014), and much more detailed infor-
mation is available in monographs and review articles cited
there. A recent issue of the Journal of Chemical Physics
celebrated 50 years of modern density functional theory, and
the articles range across many topics of current interest
(Yang, 2014). A review of solid state applications of DF
theory is provided by Hasnip et al. (2014), and Zangwill
(2014) discussed the life and work of Walter Kohn,
particularly in this context. I use numerous citations of
participants in (and observers of) this story to illustrate how
perspectives on the approach have changed. The two
applications I discuss are DF simulations of systems that
were unimaginable only a few years ago.
I have several goals in writing this review. The large growth

in the DF literature is possible only if there are many recent
arrivals in the field. This review is written for them and for
those in other areas of science who are curious about the DF
world. I hope that all share my fascination with the formalism
and its history, sense the excitement that being part of a
developing field can bring, and appreciate that scientific
research is carried out by people, not machines. Personal
contacts over the years have shown, however, that it is not only
newcomers who are unfamiliar with the past or the reaction of
different scientific communities as the theory developed.
Density-related methods are also important in other areas,
including classical systems and nuclei, and I encourage
interested readers to look beyond the horizons of their
particular interest. Finally, I note that both Burke (2012)
and Becke (2014) are uneasy about some recent develop-
ments, and I shall raise my own questions about the future.

II. THE DENSITY AS A BASIC VARIABLE

The recent books by Segrè (2007) and Farmelo (2009) give
fascinating accounts of the development of quantum mechan-
ics in the years following 1926. Methods for finding approxi-
mate solutions of the Schrödinger equation followed soon
after the equations were published and have had a profound
effect on chemistry and condensed matter physics ever since.
A method for calculating the wave function of an atom was

developed by Hartree (1928a, 1928b), who introduced the
idea of a “self-consistent field” with particular reference to
valence electrons and groups of core electrons. In this
approach, the wave function of an electron ψ i is determined
from the field of the nucleus and the other electrons in a self-
consistent fashion. One starts with an approximate field [such
as one derived using the Thomas-Fermi (TF) approximation
discussed later] and iterates until input and output fields for all
electrons are the same.
The wave function of the N-electron system can be

approximated by the product of N single-particle functions,

Ψðr1; r2;…Þ ¼ ψ1ðr1Þ $ $ $ψNðrNÞ; ð1Þ
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FIG. 1 (color online). Number of publications per year (1975–
2014) on topics (“density functional” or “DFT”), according to the
Web of Science Core Collection (February 2015). The inset shows
data near 1990 on an expanded scale. The number of publications
depends on the precise search criteria, but the overall picture is
unchanged. From Mavropoulos, 2015.

1“For periodic solids it is sometimes referred to as the standard
model” (Kohn, 1999).

2A similar plot is given by Burke (2012) for two popular
approximations used in DF calculations.

3In 1985, 20 years after its modern formulation and in the year that
the combined DF and MD approach (Car and Parrinello, 1985) was
formulated, there were less than 90 such publications, and some of
these were for classical density functional theory and unrelated topics.

898 R. O. Jones: Density functional theory: Its origins, rise …

Rev. Mod. Phys., Vol. 87, No. 3, July–September 2015

– R.	O.	Jones,	Rev.	Mod.	Phys.	87,	897	(2015). – materialsproject.org	(Lawrence	Berkeley	National	Laboratory)
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Systemic error #1: delocalisation error Systemic error #1: delocalisation errorOrigins of SIE
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E(N + q) = (1� q)E(N) + qE(N + 1)

0  q  1

Ec[n] ⇠ UH [n]

Ec[n] ⇠ Ts[n]

Ø  J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Phys. Rev. Lett. 49, 1691 (1982)!
Ø A.J.Cohen,P.Mori-Sanchez,andW.Yang, J. Chem. Phys. 129, 121104 (2008) !
Ø A. J. Cohen, P. Mori-Sanchez, and W. Yang, Science 321, 792 (2008) !

• A type of electron self-interaction error
• Insulating gap, polarisation, charge-transfer
• Magnetisation, ionisation potential, binding curves

H
+
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DFT+U : the modern interpretationDFT+U: the modern interpretationThe DFT+U method

Ø  M. Cococcioni and S. de Gironcoli, Phys. Rev. B 71, 035105 (2005) !
Ø  W.E. Pickett, S.C. Erwin, E.C. Ethridge, Phys. Rev. B, 58, 1201 (1998)!
Ø  V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991) !
Ø  A. J. Cohen, P. Mori-Sanchez, and W. Yang, Science 321, 792 (2008) !
 !
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Û = �̂�1

0
� �̂�1 (9)

U I =
@↵KS

@N I
� @↵

@N I
(10)
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Û = �̂�1

0
� �̂�1 (7)

U I =
@↵KS

@N I
� @↵

@N I
(8)
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Notation Condition Formula according to equation
U (1) Uout = Uin Uin = fHxc(Uin)/2
U (2) Uout = 0 Uin = fHxc(Uin)
U (3) Uout(0) Uout(0) = U (2)(1� dfHxc/dUin|U(2))

Table 1: Summary of the three self-consistency criteria.

Re ED !e !e�e

Experiment [?] 1.988 2.6508 2321.7 66.2
Exact 1.997 2.7922 2323.63 59.93
PBE 2.138 2.9928 1912.02 37.86

PBE+U (1) 1.965 2.9604 2346.91 57.67
PBE+U (2) 1.827 2.9931 2797.99 81.07
PBE+U (3) 1.846 2.9862 2658.81 73.38

Table 2: Equilibrium bond-lengths Re (bohr), dissociation energy ED (eV ),
harmonic frequencies !e (cm�1), and anharmonicities !e�e (cm�1) for each
calculation scheme, compared to experimental values.
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Table 1: Summary of the three self-consistency criteria.

Re ED !e !e�e

Experiment [?] 1.988 2.6508 2321.7 66.2
Exact 1.997 2.7922 2323.63 59.93
PBE 2.138 2.9928 1912.02 37.86

PBE+U (1) 1.965 2.9604 2346.91 57.67
PBE+U (2) 1.827 2.9931 2797.99 81.07
PBE+U (3) 1.846 2.9862 2658.81 73.38

Table 2: Equilibrium bond-lengths Re (bohr), dissociation energy ED (eV ),
harmonic frequencies !e (cm�1), and anharmonicities !e�e (cm�1) for each
calculation scheme, compared to experimental values.

3

DFT+U1+U2 : Phys. Rev. B 
94, 220104(R) (2016).
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How to quantify SIE on sub-spaces? How to quantify SIE on sub-spaces?

• Define U as the subspace-averaged rate of 

change of Hxc potential on charge N, w.r.t. N.

• If 

• then

• where
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NiO DFT(PBE) DoS
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NiO DFT(PBE)+U DoSNiO PBE+U DOS
Exp: Band gap = 3.0 eV Mag. Mom. = 1.6 – 1.9 μB!
PBE+U: Band gap = 3.04 eV Mag. Mom. = 1.62 μB!

Ø  S. Hüfner, Adv. Phys. 43, 183 (1994) !

!
!
!
!
!
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Systemic error #2: static correlation error Systemic error #2: static correlation errorOrigins of SCE
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Ø  J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Phys. Rev. Lett. 49, 1691 (1982) !
Ø A.J.Cohen,P.Mori-Sanchez,and W.Yang, J. Chem. Phys. 129, 121104 (2008) !
Ø A. J. Cohen, P. Mori-Sanchez, and W. Yang, Science 321, 792 (2008) !
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How to quantify SCE on sub-spaces? How to quantify SCE on sub-spaces?

• Define J as minus the subspace-averaged rate of 

change of Hxc potential on magnetism M, w.r.t. M.

• If 

• then

• where
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NiO self-consistent DFT(PBE)+(U-J) DoSNiO PBE+Ueff
(2) DOS

Ue↵ = 5.2 eV

Exp: Band gap = 3.0 eV Mag. Mom. = 1.6 – 1.9 μB!
PBE+U: Band gap = 3.0 eV Mag. Mom. = 1.57 μB!
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Effect of O 2p correction terms on geometries

12

FIG. 9. The local Mn, O, and total densities of states as obtained by the di↵erent schemes. The 1⇥ 1 result is similar to the
averaged 1 ⇥ 1 result, and so has been excluded for simplicity. The energy scale is shown relative to the valence band edge
energy "VBE. Experimental results (XES and XPS) from Ref 114 are included for comparison.

FIG. 10. The mean (a) axial and (b) equatorial bond lengths of hexahydrated Mn3+ when optimized using DFT+U , for various
values of UMn and without adding a Hubbard correction to the oxygen atoms. The shaded regions indicate the range of values
reported by other computational studies,120–123 which are in line with experiment.124 (c) Metal-oxygen distances as given by
DFT+U–optimized structures, now with a first-principles Hubbard U correction to the oxygen 2p orbitals, as compared to
analogous PBE calculations. Each data-point corresponds to a distinct set of Hubbard parameters from Tables I and II (that
is, all di↵erent transition metal species and schemes for computing Hubbard parameters).

E. Spectroscopic properties of the hexahydrated
metal complexes

Hubbard corrections have significant bearing on spec-
troscopic properties (given that to first order, they open
a gap between the filled and unfilled Hubbard projec-
tors). This section will focus on d-d excitation energies,
where a single electron transitions between two 3d or-
bitals. While these transitions are formally dipole-dipole
forbidden by the Laporte selection rule, they are allowed
via vibronic coupling.130

The first subset of such transitions are those which in-
volve the flip of the electron’s spin. These transitions
additionally violate spin selection rules, but vibronic
coupling again means that they are observable (albeit
weakly). The transition energies are simply calculated as
the di↵erence in the total energy between two DFT (+U)

calculations where the total spin di↵ers by ~. This was
done without updating U (for a brief discussion regarding
the updating of U see Appendix C). As this approach re-
lies only on the accuracy of the total energy, DFT alone
(without a Hubbard correction) might give reasonable
results. This is indeed what we find (Table IV). The re-
sults are relatively insensitive to the choice of Hubbard
parameters. Surprisingly, the scalar and scaled 2⇥ 2 ap-
proaches yield near-identical results, despite the fact that
the two approaches di↵er by the value for J and share
the same value for U . A Hund’s correction ought to have
a significant bearing on spin-flip energies, providing fur-
ther evidence that the precise functional form of the +J

functional needs revision.

The other possible d-d excitations involve the transi-
tion of a single electron without changing its spin. These
transitions are spin-allowed, and thus will exhibit inten-

7

FIG. 3. The ground state of the 3d electrons in (a)
[Mn(H2O)6]

2+ and (b) [Mn(H2O)6]
3+. In both systems, the

dxy, dxz, and dyz orbitals have lower energy as they have
lobes directed between the ligands (and hence less overlap
with the ligand orbitals). For the doubly-charged system, the
system is symmetric and no Jahn-Teller splitting takes place.
In the triply-charged system, the molecule distorts into a D2h

symmetry as shown in (c), with the axial bonds (dashed) frac-
tionally longer than the equatorial bonds (solid).

functionals.68–71 DFT+U may provide a more accurate
description of these systems.16,26,50,62

Manganese oxide (MnO) has a rock salt structure. At
low temperatures it is antiferromagnetic,72 and has a
band gap of approximately 4 eV that is substantially un-
derestimated by semi-local functionals.19 Conventional
linear-response calculations on MnO yield an excessively
large Hubbard parameter (U > 7 eV).73

Meanwhile, hexahydrated transition metals comprise
of a central first-row transition metal ion surrounded by
six water ligands in a tetragonal arrangement (Fig. 3c).
Such systems bear some resemblance to a fundamental
unit of transition metal oxides, as well as organometallic
systems such as the oxygen evolving complex of photo-
system II.74,75

Depending on the electronic structure of the metal,
these systems may exhibit Jahn-Teller distortion, result-
ing in an elongated tetragonal structure with two axial
waters being slightly more distant than their four equa-
torial counterparts (Fig. 3).

A. Computational details

All calculations were performed using
ONETEP21,22,35,53,76–78 (Order-N Electronic Total
Energy Package, version 4.3) using the Perdew-Burke-
Ernzerhof (PBE) xc-functional.6

For MnO, a square super-cell containing 512 atoms was
simulated under periodic boundary conditions without
explicit k-point sampling. This is a non-diagonal super-
cell79 of the four-atom primitive cell, and gives an equiva-

lent k-point sampling scheme that includes both Z and �.
(This is crucial because the band gap of MnO is known to
be Z to �.) The lattice parameter was set to the exper-
imental value of 4.445 Å.80 The calculations were spin-
polarized, with an energy cut-o↵ of 1030 eV. ONETEP
uses a basis of non-orthogonal generalized Wannier func-
tions (NGWFs) that are variationally optimized in situ.
Each Mn atom had ten NGWFs; O atoms, four. All
NGWFs had a cuto↵ radius of 11.0 a0.
For the hexahydrated metals, all calculations were

spin-polarized, with an energy cut-o↵ of 897 eV. Depend-
ing on the species, there were 9, 10, or 13 NGWFs on the
transition metal atom, four on each oxygen, and one on
each hydrogen. All NGWFs had 14 a0 cuto↵ radii. An
Elstner dispersion correction81,82 was applied, and elec-
trostatics were treated using a padded cell and a Coulomb
cut-o↵.83

For all the calculations, the Hubbard projectors were
constructed from solving the neutral atomic problem sub-
ject to the pseudopotential of the species in question.77

Most pseudopotentials were taken from the Rappe group
pseudopotential library84 although those for Co and Fe
were generated in-house using OPIUM.85–91 These were
scalar relativistic pseudopotentials92 with non-linear core
corrections.93. All DFT+U + J calculations used a +J

correction to the energy, potential, and ionic forces. We
used the energetic correction shown in Eq. 3 (following
the example of Ref. 25 we have omitted the “nmin” term
that appears in that paper).
Example input and output files can be found at

www.repository.cam.ac.uk/.

B. Calculating Hubbard parameters

Hubbard U and Hund’s J parameters were calculated
for a set of hexahydrated transition metals. Prior to the
linear response calculations, the geometries of every sys-
tem were optimized using the PBE xc-functional with-
out a Hubbard correction and with the water molecules
constrained to their respective planes. Various linear re-
sponse approaches were performed: averaged and non-
averaged 1 ⇥ 1, simple and scaled 2 ⇥ 2, as well as the
standard scalar approach. While the scalar values re-
ported here will be roughly analogous to conventional
linear response reported elsewhere, they were calculated
using minimum-tracking linear response, not SCF, which
di↵er in their definitions of �0.
Hubbard and Hund’s parameters were obtained for two

Hubbard subspaces: the 3d subspace on the transition
metal ion, and the 2p subspace on one of the equatorial
oxygen atoms, taken as a representative of the six oxygen
atoms in the system. The Hubbard parameters that were
obtained are listed in Tables I and II respectively, and
plotted in Fig. 4. The uncertainties in the Hubbard pa-
rameters have also been calculated from the error in the
least-square fits of dv

�
Hxc

/dn
�0
, dv

�
KS

/dv
�0

ext
and dn

�
/dv

�0

ext

using unbiased Gaussian error propagation. These error

– For details on Hund’s J calculation, see:                   
E. B. Linscott, D. J. Cole, M. C. Payne, and                 
D. D. O’Regan, Phys. Rev. B 98, 235157 (2018). 

– For ionic forces and nonorthogonal population 
analysis schemes in DFT+U and related methods: 
D. D. O’Regan, M. C. Payne, and A. A. Mostofi 
Phys. Rev. B 83, 245124 (2011).
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TABLE I. Values of U and J (eV) for hexahydrated transition metals and a spin-up manganese atom of MnO, calculated using the various
linear-response schemes introduced in Sec. II A. The linear-response calculations for the fully filled 3d subspace in Fe3+ were poorly behaved
(two different pseudopotentials were tested) and have consequently been excluded.

Scalar Averaged 1 × 1 1 × 1 Simple 2 × 2 Scaled 2 × 2

Metal U U U↑ U↓ U J U J

Ti3+ 3.88 ± 0.00 1.66 ± 0.00 1.85 ± 0.01 1.47 ± 0.00 3.90 ± 0.01 0.34 ± 0.00 3.89 ± 0.01 0.34 ± 0.00
V2+ 4.00 ± 0.00 2.78 ± 0.00 3.29 ± 0.00 2.28 ± 0.00 4.07 ± 0.01 0.34 ± 0.00 4.00 ± 0.01 0.35 ± 0.00
Cr3+ 3.90 ± 0.00 1.78 ± 0.00 1.86 ± 0.00 1.70 ± 0.00 4.04 ± 0.01 0.40 ± 0.00 3.90 ± 0.01 0.42 ± 0.00
Cr2+ 3.20 ± 0.00 2.39 ± 0.00 2.75 ± 0.00 2.04 ± 0.00 3.34 ± 0.01 0.33 ± 0.00 3.20 ± 0.01 0.35 ± 0.00
Mn3+ 5.40 ± 0.00 2.00 ± 0.00 1.51 ± 0.00 2.50 ± 0.00 5.86 ± 0.01 0.50 ± 0.00 5.40 ± 0.01 0.53 ± 0.00
Mn2+ 4.36 ± 0.00 4.05 ± 0.08 4.28 ± 0.15 3.82 ± 0.00 4.90 ± 0.06 0.37 ± 0.06 4.35 ± 0.01 0.52 ± 0.01
Fe3+ 5.88 ± 0.01 5.45 ± 0.02 5.92 ± 0.02 0.81 ± 0.02
Fe2+ 4.58 ± 0.00 5.07 ± 0.09 6.28 ± 0.18 3.86 ± 0.00 6.06 ± 0.09 0.43 ± 0.06 4.58 ± 0.01 0.63 ± 0.01
Co3+ 6.25 ± 0.00 1.19 ± 0.00 1.19 ± 0.00 1.19 ± 0.00 6.25 ± 0.00 0.75 ± 0.00 6.25 ± 0.00 0.75 ± 0.00
Co2+ 4.95 ± 0.02 6.19 ± 0.02 8.17 ± 0.03 4.22 ± 0.02 7.15 ± 0.02 0.48 ± 0.01 4.96 ± 0.02 0.65 ± 0.01
Ni2+ 5.26 ± 0.00 9.84 ± 0.02 15.41 ± 0.05 4.27 ± 0.00 12.35 ± 0.03 0.75 ± 0.02 5.26 ± 0.01 0.78 ± 0.01
Cu2+ 4.62 ± 0.00 −2.54 ± 0.03 −9.11 ± 0.05 4.04 ± 0.00 −4.99 ± 0.02 0.85 ± 0.02 4.63 ± 0.01 0.90 ± 0.01
MnO 5.44 ± 0.04 4.63 ± 0.08 5.54 ± 0.15 3.72 ± 0.02 8.38 ± 0.15 0.51 ± 0.05 5.37 ± 0.04 0.49 ± 0.02

All DFT + U + J calculations used a +J correction to the486

energy, potential, and ionic forces. We used the energetic cor-487

rection shown in Eq. (3) (following the example of Ref. [25]488

we have omitted the “nmin” term that appears in that paper).489

Example input and output files can be found in Ref. [94].490

B. Calculating Hubbard parameters491

Hubbard U and Hund’s J parameters were calculated for492

a set of hexahydrated transition metals. Prior to the linear493

response calculations, the geometries of every system were494

optimized using the PBE xc functional without a Hubbard495

correction and with the water molecules constrained to their496

respective planes. Various linear response approaches were497

performed: averaged and nonaveraged 1 × 1, simple and498

scaled 2 × 2, as well as the standard scalar approach. While499

the scalar values reported here will be roughly analogous to500

conventional linear response reported elsewhere, they were501

calculated using minimum-tracking linear response, not SCF,502

which differ in their definitions of χ0.503

Hubbard and Hund’s parameters were obtained for two 504

Hubbard subspaces: the 3d subspace on the transition-metal 505

ion, and the 2p subspace on one of the equatorial oxygen 506

atoms, taken as a representative of the six oxygen atoms 507

in the system. The Hubbard parameters that were obtained 508

are listed in Tables I and II, respectively, and plotted in 509

Fig. 4. The uncertainties in the Hubbard parameters have 510

also been calculated from the error in the least-square fits 511

of dvσ
Hxc/dnσ ′

, dvσ
KS/dvσ ′

ext, and dnσ /dvσ ′

ext using unbiased 512

Gaussian error propagation. These error estimates prove to be 513

very instructive. 514

1. General trends 515

Both tables exhibit some general trends: the Hubbard 516

parameters of the metal ions grow slowly as the number of 517

3d electrons increases [Fig. 4(a)]; oxygen parameters remain 518

relatively stable; the Hund’s coupling parameters of the met- 519

als appear reasonable. Furthermore, the scalar approach and 520

scaled 2 × 2 (atomwise inversion) yield the same result across 521

TABLE II. Values of U and J (eV) calculated using the various linear response schemes, for an equatorial oxygen atom within
hexahydrated transition-metal systems, and for a MnO oxygen atom.

Scalar Averaged 1 × 1 1 × 1 Simple 2 × 2 Scaled 2 × 2

Metal U U U↑ U↓ U J U J

Ti3+ 8.16 ± 0.03 5.05 ± 0.01 5.20 ± 0.01 4.89 ± 0.00 8.14 ± 0.02 1.05 ± 0.00 8.13 ± 0.02 1.05 ± 0.00
V2+ 8.28 ± 0.00 5.69 ± 0.00 5.70 ± 0.00 5.69 ± 0.00 8.28 ± 0.01 1.29 ± 0.00 8.28 ± 0.01 1.29 ± 0.00
Cr3+ 8.29 ± 0.00 5.54 ± 0.00 5.44 ± 0.00 5.65 ± 0.00 8.29 ± 0.02 1.08 ± 0.01 8.29 ± 0.02 1.08 ± 0.01
Cr2+ 8.44 ± 0.01 6.28 ± 0.01 6.55 ± 0.01 6.01 ± 0.02 8.45 ± 0.02 1.27 ± 0.01 8.45 ± 0.02 1.27 ± 0.01
Mn3+ 8.57 ± 0.00 4.94 ± 0.00 5.53 ± 0.00 4.35 ± 0.00 8.58 ± 0.03 0.97 ± 0.01 8.57 ± 0.03 0.97 ± 0.01
Mn2+ 8.30 ± 0.00 6.05 ± 0.01 5.70 ± 0.01 6.39 ± 0.00 8.29 ± 0.01 1.31 ± 0.00 8.31 ± 0.01 1.30 ± 0.01
Fe3+ 8.37 ± 0.03 5.55 ± 0.05 4.48 ± 0.07 6.62 ± 0.07 8.59 ± 0.14 1.24 ± 0.06 8.40 ± 0.12 1.06 ± 0.06
Fe2+ 8.83 ± 0.01 5.77 ± 0.00 5.43 ± 0.01 6.10 ± 0.00 8.83 ± 0.01 1.40 ± 0.00 8.83 ± 0.01 1.39 ± 0.01
Co3+ 8.26 ± 0.00 4.37 ± 0.09 4.27 ± 0.11 4.48 ± 0.15 8.39 ± 0.10 1.12 ± 0.05 8.39 ± 0.10 1.12 ± 0.05
Co2+ 8.25 ± 0.06 5.24 ± 0.10 4.89 ± 0.11 5.60 ± 0.15 8.24 ± 0.09 1.38 ± 0.06 8.25 ± 0.09 1.37 ± 0.06
Ni2+ 8.09 ± 0.01 4.89 ± 0.00 4.65 ± 0.00 5.14 ± 0.00 8.09 ± 0.01 1.37 ± 0.00 8.09 ± 0.01 1.37 ± 0.00
Cu2+ 8.38 ± 0.00 5.08 ± 0.00 4.68 ± 0.00 5.48 ± 0.00 8.36 ± 0.01 1.38 ± 0.00 8.38 ± 0.01 1.38 ± 0.00
MnO 10.88 ± 0.01 5.32 ± 0.04 5.32 ± 0.05 5.32 ± 0.05 10.92 ± 0.12 1.03 ± 0.03 10.92 ± 0.12 1.03 ± 0.03
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TABLE I. Values of U and J (eV) for hexahydrated transition metals and a spin-up manganese atom of MnO, calculated using the various
linear-response schemes introduced in Sec. II A. The linear-response calculations for the fully filled 3d subspace in Fe3+ were poorly behaved
(two different pseudopotentials were tested) and have consequently been excluded.

Scalar Averaged 1 × 1 1 × 1 Simple 2 × 2 Scaled 2 × 2

Metal U U U↑ U↓ U J U J

Ti3+ 3.88 ± 0.00 1.66 ± 0.00 1.85 ± 0.01 1.47 ± 0.00 3.90 ± 0.01 0.34 ± 0.00 3.89 ± 0.01 0.34 ± 0.00
V2+ 4.00 ± 0.00 2.78 ± 0.00 3.29 ± 0.00 2.28 ± 0.00 4.07 ± 0.01 0.34 ± 0.00 4.00 ± 0.01 0.35 ± 0.00
Cr3+ 3.90 ± 0.00 1.78 ± 0.00 1.86 ± 0.00 1.70 ± 0.00 4.04 ± 0.01 0.40 ± 0.00 3.90 ± 0.01 0.42 ± 0.00
Cr2+ 3.20 ± 0.00 2.39 ± 0.00 2.75 ± 0.00 2.04 ± 0.00 3.34 ± 0.01 0.33 ± 0.00 3.20 ± 0.01 0.35 ± 0.00
Mn3+ 5.40 ± 0.00 2.00 ± 0.00 1.51 ± 0.00 2.50 ± 0.00 5.86 ± 0.01 0.50 ± 0.00 5.40 ± 0.01 0.53 ± 0.00
Mn2+ 4.36 ± 0.00 4.05 ± 0.08 4.28 ± 0.15 3.82 ± 0.00 4.90 ± 0.06 0.37 ± 0.06 4.35 ± 0.01 0.52 ± 0.01
Fe3+ 5.88 ± 0.01 5.45 ± 0.02 5.92 ± 0.02 0.81 ± 0.02
Fe2+ 4.58 ± 0.00 5.07 ± 0.09 6.28 ± 0.18 3.86 ± 0.00 6.06 ± 0.09 0.43 ± 0.06 4.58 ± 0.01 0.63 ± 0.01
Co3+ 6.25 ± 0.00 1.19 ± 0.00 1.19 ± 0.00 1.19 ± 0.00 6.25 ± 0.00 0.75 ± 0.00 6.25 ± 0.00 0.75 ± 0.00
Co2+ 4.95 ± 0.02 6.19 ± 0.02 8.17 ± 0.03 4.22 ± 0.02 7.15 ± 0.02 0.48 ± 0.01 4.96 ± 0.02 0.65 ± 0.01
Ni2+ 5.26 ± 0.00 9.84 ± 0.02 15.41 ± 0.05 4.27 ± 0.00 12.35 ± 0.03 0.75 ± 0.02 5.26 ± 0.01 0.78 ± 0.01
Cu2+ 4.62 ± 0.00 −2.54 ± 0.03 −9.11 ± 0.05 4.04 ± 0.00 −4.99 ± 0.02 0.85 ± 0.02 4.63 ± 0.01 0.90 ± 0.01
MnO 5.44 ± 0.04 4.63 ± 0.08 5.54 ± 0.15 3.72 ± 0.02 8.38 ± 0.15 0.51 ± 0.05 5.37 ± 0.04 0.49 ± 0.02

All DFT + U + J calculations used a +J correction to the486

energy, potential, and ionic forces. We used the energetic cor-487

rection shown in Eq. (3) (following the example of Ref. [25]488

we have omitted the “nmin” term that appears in that paper).489

Example input and output files can be found in Ref. [94].490

B. Calculating Hubbard parameters491

Hubbard U and Hund’s J parameters were calculated for492

a set of hexahydrated transition metals. Prior to the linear493

response calculations, the geometries of every system were494

optimized using the PBE xc functional without a Hubbard495

correction and with the water molecules constrained to their496

respective planes. Various linear response approaches were497

performed: averaged and nonaveraged 1 × 1, simple and498

scaled 2 × 2, as well as the standard scalar approach. While499

the scalar values reported here will be roughly analogous to500

conventional linear response reported elsewhere, they were501

calculated using minimum-tracking linear response, not SCF,502

which differ in their definitions of χ0.503

Hubbard and Hund’s parameters were obtained for two 504

Hubbard subspaces: the 3d subspace on the transition-metal 505

ion, and the 2p subspace on one of the equatorial oxygen 506

atoms, taken as a representative of the six oxygen atoms 507

in the system. The Hubbard parameters that were obtained 508

are listed in Tables I and II, respectively, and plotted in 509

Fig. 4. The uncertainties in the Hubbard parameters have 510

also been calculated from the error in the least-square fits 511

of dvσ
Hxc/dnσ ′

, dvσ
KS/dvσ ′

ext, and dnσ /dvσ ′

ext using unbiased 512

Gaussian error propagation. These error estimates prove to be 513

very instructive. 514

1. General trends 515

Both tables exhibit some general trends: the Hubbard 516

parameters of the metal ions grow slowly as the number of 517

3d electrons increases [Fig. 4(a)]; oxygen parameters remain 518

relatively stable; the Hund’s coupling parameters of the met- 519

als appear reasonable. Furthermore, the scalar approach and 520

scaled 2 × 2 (atomwise inversion) yield the same result across 521

TABLE II. Values of U and J (eV) calculated using the various linear response schemes, for an equatorial oxygen atom within
hexahydrated transition-metal systems, and for a MnO oxygen atom.

Scalar Averaged 1 × 1 1 × 1 Simple 2 × 2 Scaled 2 × 2

Metal U U U↑ U↓ U J U J

Ti3+ 8.16 ± 0.03 5.05 ± 0.01 5.20 ± 0.01 4.89 ± 0.00 8.14 ± 0.02 1.05 ± 0.00 8.13 ± 0.02 1.05 ± 0.00
V2+ 8.28 ± 0.00 5.69 ± 0.00 5.70 ± 0.00 5.69 ± 0.00 8.28 ± 0.01 1.29 ± 0.00 8.28 ± 0.01 1.29 ± 0.00
Cr3+ 8.29 ± 0.00 5.54 ± 0.00 5.44 ± 0.00 5.65 ± 0.00 8.29 ± 0.02 1.08 ± 0.01 8.29 ± 0.02 1.08 ± 0.01
Cr2+ 8.44 ± 0.01 6.28 ± 0.01 6.55 ± 0.01 6.01 ± 0.02 8.45 ± 0.02 1.27 ± 0.01 8.45 ± 0.02 1.27 ± 0.01
Mn3+ 8.57 ± 0.00 4.94 ± 0.00 5.53 ± 0.00 4.35 ± 0.00 8.58 ± 0.03 0.97 ± 0.01 8.57 ± 0.03 0.97 ± 0.01
Mn2+ 8.30 ± 0.00 6.05 ± 0.01 5.70 ± 0.01 6.39 ± 0.00 8.29 ± 0.01 1.31 ± 0.00 8.31 ± 0.01 1.30 ± 0.01
Fe3+ 8.37 ± 0.03 5.55 ± 0.05 4.48 ± 0.07 6.62 ± 0.07 8.59 ± 0.14 1.24 ± 0.06 8.40 ± 0.12 1.06 ± 0.06
Fe2+ 8.83 ± 0.01 5.77 ± 0.00 5.43 ± 0.01 6.10 ± 0.00 8.83 ± 0.01 1.40 ± 0.00 8.83 ± 0.01 1.39 ± 0.01
Co3+ 8.26 ± 0.00 4.37 ± 0.09 4.27 ± 0.11 4.48 ± 0.15 8.39 ± 0.10 1.12 ± 0.05 8.39 ± 0.10 1.12 ± 0.05
Co2+ 8.25 ± 0.06 5.24 ± 0.10 4.89 ± 0.11 5.60 ± 0.15 8.24 ± 0.09 1.38 ± 0.06 8.25 ± 0.09 1.37 ± 0.06
Ni2+ 8.09 ± 0.01 4.89 ± 0.00 4.65 ± 0.00 5.14 ± 0.00 8.09 ± 0.01 1.37 ± 0.00 8.09 ± 0.01 1.37 ± 0.00
Cu2+ 8.38 ± 0.00 5.08 ± 0.00 4.68 ± 0.00 5.48 ± 0.00 8.36 ± 0.01 1.38 ± 0.00 8.38 ± 0.01 1.38 ± 0.00
MnO 10.88 ± 0.01 5.32 ± 0.04 5.32 ± 0.05 5.32 ± 0.05 10.92 ± 0.12 1.03 ± 0.03 10.92 ± 0.12 1.03 ± 0.03
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TABLE I. Values of U and J (eV) for hexahydrated transition metals and a spin-up manganese atom of MnO, calculated using the various
linear-response schemes introduced in Sec. II A. The linear-response calculations for the fully filled 3d subspace in Fe3+ were poorly behaved
(two different pseudopotentials were tested) and have consequently been excluded.

Scalar Averaged 1 × 1 1 × 1 Simple 2 × 2 Scaled 2 × 2

Metal U U U↑ U↓ U J U J

Ti3+ 3.88 ± 0.00 1.66 ± 0.00 1.85 ± 0.01 1.47 ± 0.00 3.90 ± 0.01 0.34 ± 0.00 3.89 ± 0.01 0.34 ± 0.00
V2+ 4.00 ± 0.00 2.78 ± 0.00 3.29 ± 0.00 2.28 ± 0.00 4.07 ± 0.01 0.34 ± 0.00 4.00 ± 0.01 0.35 ± 0.00
Cr3+ 3.90 ± 0.00 1.78 ± 0.00 1.86 ± 0.00 1.70 ± 0.00 4.04 ± 0.01 0.40 ± 0.00 3.90 ± 0.01 0.42 ± 0.00
Cr2+ 3.20 ± 0.00 2.39 ± 0.00 2.75 ± 0.00 2.04 ± 0.00 3.34 ± 0.01 0.33 ± 0.00 3.20 ± 0.01 0.35 ± 0.00
Mn3+ 5.40 ± 0.00 2.00 ± 0.00 1.51 ± 0.00 2.50 ± 0.00 5.86 ± 0.01 0.50 ± 0.00 5.40 ± 0.01 0.53 ± 0.00
Mn2+ 4.36 ± 0.00 4.05 ± 0.08 4.28 ± 0.15 3.82 ± 0.00 4.90 ± 0.06 0.37 ± 0.06 4.35 ± 0.01 0.52 ± 0.01
Fe3+ 5.88 ± 0.01 5.45 ± 0.02 5.92 ± 0.02 0.81 ± 0.02
Fe2+ 4.58 ± 0.00 5.07 ± 0.09 6.28 ± 0.18 3.86 ± 0.00 6.06 ± 0.09 0.43 ± 0.06 4.58 ± 0.01 0.63 ± 0.01
Co3+ 6.25 ± 0.00 1.19 ± 0.00 1.19 ± 0.00 1.19 ± 0.00 6.25 ± 0.00 0.75 ± 0.00 6.25 ± 0.00 0.75 ± 0.00
Co2+ 4.95 ± 0.02 6.19 ± 0.02 8.17 ± 0.03 4.22 ± 0.02 7.15 ± 0.02 0.48 ± 0.01 4.96 ± 0.02 0.65 ± 0.01
Ni2+ 5.26 ± 0.00 9.84 ± 0.02 15.41 ± 0.05 4.27 ± 0.00 12.35 ± 0.03 0.75 ± 0.02 5.26 ± 0.01 0.78 ± 0.01
Cu2+ 4.62 ± 0.00 −2.54 ± 0.03 −9.11 ± 0.05 4.04 ± 0.00 −4.99 ± 0.02 0.85 ± 0.02 4.63 ± 0.01 0.90 ± 0.01
MnO 5.44 ± 0.04 4.63 ± 0.08 5.54 ± 0.15 3.72 ± 0.02 8.38 ± 0.15 0.51 ± 0.05 5.37 ± 0.04 0.49 ± 0.02

All DFT + U + J calculations used a +J correction to the486

energy, potential, and ionic forces. We used the energetic cor-487

rection shown in Eq. (3) (following the example of Ref. [25]488

we have omitted the “nmin” term that appears in that paper).489

Example input and output files can be found in Ref. [94].490

B. Calculating Hubbard parameters491

Hubbard U and Hund’s J parameters were calculated for492

a set of hexahydrated transition metals. Prior to the linear493

response calculations, the geometries of every system were494

optimized using the PBE xc functional without a Hubbard495

correction and with the water molecules constrained to their496
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scaled 2 × 2, as well as the standard scalar approach. While499
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which differ in their definitions of χ0.503
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, dvσ
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1. General trends 515
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TABLE II. Values of U and J (eV) calculated using the various linear response schemes, for an equatorial oxygen atom within
hexahydrated transition-metal systems, and for a MnO oxygen atom.

Scalar Averaged 1 × 1 1 × 1 Simple 2 × 2 Scaled 2 × 2

Metal U U U↑ U↓ U J U J

Ti3+ 8.16 ± 0.03 5.05 ± 0.01 5.20 ± 0.01 4.89 ± 0.00 8.14 ± 0.02 1.05 ± 0.00 8.13 ± 0.02 1.05 ± 0.00
V2+ 8.28 ± 0.00 5.69 ± 0.00 5.70 ± 0.00 5.69 ± 0.00 8.28 ± 0.01 1.29 ± 0.00 8.28 ± 0.01 1.29 ± 0.00
Cr3+ 8.29 ± 0.00 5.54 ± 0.00 5.44 ± 0.00 5.65 ± 0.00 8.29 ± 0.02 1.08 ± 0.01 8.29 ± 0.02 1.08 ± 0.01
Cr2+ 8.44 ± 0.01 6.28 ± 0.01 6.55 ± 0.01 6.01 ± 0.02 8.45 ± 0.02 1.27 ± 0.01 8.45 ± 0.02 1.27 ± 0.01
Mn3+ 8.57 ± 0.00 4.94 ± 0.00 5.53 ± 0.00 4.35 ± 0.00 8.58 ± 0.03 0.97 ± 0.01 8.57 ± 0.03 0.97 ± 0.01
Mn2+ 8.30 ± 0.00 6.05 ± 0.01 5.70 ± 0.01 6.39 ± 0.00 8.29 ± 0.01 1.31 ± 0.00 8.31 ± 0.01 1.30 ± 0.01
Fe3+ 8.37 ± 0.03 5.55 ± 0.05 4.48 ± 0.07 6.62 ± 0.07 8.59 ± 0.14 1.24 ± 0.06 8.40 ± 0.12 1.06 ± 0.06
Fe2+ 8.83 ± 0.01 5.77 ± 0.00 5.43 ± 0.01 6.10 ± 0.00 8.83 ± 0.01 1.40 ± 0.00 8.83 ± 0.01 1.39 ± 0.01
Co3+ 8.26 ± 0.00 4.37 ± 0.09 4.27 ± 0.11 4.48 ± 0.15 8.39 ± 0.10 1.12 ± 0.05 8.39 ± 0.10 1.12 ± 0.05
Co2+ 8.25 ± 0.06 5.24 ± 0.10 4.89 ± 0.11 5.60 ± 0.15 8.24 ± 0.09 1.38 ± 0.06 8.25 ± 0.09 1.37 ± 0.06
Ni2+ 8.09 ± 0.01 4.89 ± 0.00 4.65 ± 0.00 5.14 ± 0.00 8.09 ± 0.01 1.37 ± 0.00 8.09 ± 0.01 1.37 ± 0.00
Cu2+ 8.38 ± 0.00 5.08 ± 0.00 4.68 ± 0.00 5.48 ± 0.00 8.36 ± 0.01 1.38 ± 0.00 8.38 ± 0.01 1.38 ± 0.00
MnO 10.88 ± 0.01 5.32 ± 0.04 5.32 ± 0.05 5.32 ± 0.05 10.92 ± 0.12 1.03 ± 0.03 10.92 ± 0.12 1.03 ± 0.03
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This is nothing less than the scalar expression U = χ−1
0 −395

χ−1, which is used in scalar linear response. We may conclude396

that the conventional scalar approach and scaled 2 × 2 are397

entirely equivalent.398

Therefore, Hubbard parameters obtained by spin-399

aggregated approaches are not screened by the opposite400

spin channel on the same site. Since they combine both401

like and unlike spin interactions [cf. Eq. (20)], they do not402

correspond to the like-spin-only interaction Ueff = U − J403

(as implied elsewhere) [66]. We could have anticipated this404

result: during a scalar linear-response calculation there is no405

shift in the external potential difference between the two spin406

channels, so (to first order) there is no external driver for407

changes in subspace spin polarization.408

We noted earlier that atomwise inversion formally necessi-409

tates a Hund’s correction, but such a correction is not usually410

included when the conventional linear response approach411

is employed. Given that these methods are equivalent, we412

argue that it is more consistent to include a Hund’s exchange413

correction term [e.g., calculated using Eq. (22)] if using a414

Hubbard correction calculated in the conventional manner.415

The precise functional form of the + J correction needed416

is, however, the subject of ongoing research. Recently, for417

example, Millis and co-workers demonstrated that spin-418

polarized DFT already possesses some degree of intrinsic419

exchange splitting, and they have argued convincingly that420

the contemporary form of the + J correction can overestimate421

exchange splitting [67]. This finding is corroborated by our422

own results discussed later in this paper (e.g., Table VII).423

III. APPLICATION TO A COMPLETE SERIES424

OF HEXAHYDRATED TRANSITION METALS425

AND MANGANESE OXIDE426

In the second half of this work, we explore the ramifica-427

tions of our theoretical developments on two test systems:428

hexahydrated transition metals and manganese oxide.429

In these systems, all of the metal atoms have partially430

filled 3d subshells. Electrons within these subshells are in431

such close proximity to one another that the interplay of their432

spin, charge, and orbital moment are too pronounced to be433

well described by local or semilocal xc functionals [68–71].434

DFT + U may provide a more accurate description of these435

systems [16,26,50,62].436

Manganese oxide (MnO) has a rocksalt structure. At low437

temperatures it is antiferromagnetic [72], and has a band gap438

of approximately 4 eV that is substantially underestimated439

by semilocal functionals.[19] Conventional linear-response440

calculations on MnO yield an excessively large Hubbard441

parameter (U > 7 eV) [73].442

Meanwhile, hexahydrated transition metals are comprised443

of a central first-row transition-metal ion surrounded by six444

water ligands in a tetragonal arrangement [Fig. 3(c)]. Such445

systems bear some resemblance to a fundamental unit of446

transition-metal oxides, as well as organometallic systems447

such as the oxygen evolving complex of photosystem II448

[74,75].449

Depending on the electronic structure of the metal, these450

systems may exhibit Jahn-Teller distortion, resulting in an451

elongated tetragonal structure with two axial waters being452

dxy/xz/yz

dz2/x2−y2

(a)

dxy/xz/yz

dz2

dx2−y2

(b) (c)

FIG. 3. The ground state of the 3d electrons in (a) [Mn(H2O)6]2+

and (b) [Mn(H2O)6]3+. In both systems, the dxy , dxz, and dyz orbitals
have lower energy as they have lobes directed between the ligands
(and hence less overlap with the ligand orbitals). For the doubly
charged system, the system is symmetric and no Jahn-Teller splitting
takes place. In the triply charged system, the molecule distorts into
a D2h symmetry as shown in (c), with the axial bonds (dashed)
fractionally longer than the equatorial bonds (solid).

slightly more distant than their four equatorial counterparts 453

(Fig. 3). 454

A. Computational details 455

All calculations were performed using ONETEP 456

[21,22,35,53,76–78] (order-N electronic total energy 457

package, version 4.3) using the Perdew-Burke-Ernzerhof 458

(PBE) xc functional [6]. 459

For MnO, a square supercell containing 512 atoms was 460

simulated under periodic boundary conditions without explicit 461

k-point sampling. This is a nondiagonal supercell [79] of 462

the four-atom primitive cell, and gives an equivalent k-point 463

sampling scheme that includes both Z and !. (This is crucial 464

because the band gap of MnO is known to be Z to !.) The 465

lattice parameter was set to the experimental value of 4.445 Å 466

[80]. The calculations were spin polarized, with an energy 467

cutoff of 1030 eV. ONETEP uses a basis of nonorthogonal 468

generalized Wannier functions (NGWFs) that are variationally 469

optimized in situ. Each Mn atom had ten NGWFs; O atoms, 470

four. All NGWFs had a cutoff radius of 11.0a0. 471

For the hexahydrated metals, all calculations were spin 472

polarized, with an energy cutoff of 897 eV. Depending on 473

the species, there were 9, 10, or 13 NGWFs on the transition- 474

metal atom, four on each oxygen, and one on each hydrogen. 475

All NGWFs had 14a0 cutoff radii. An Elstner dispersion 476

correction [81,82] was applied, and electrostatics were treated 477

using a padded cell and a Coulomb cutoff [83]. 478

For all the calculations, the Hubbard projectors were con- 479

structed from solving the neutral atomic problem subject to 480

the pseudopotential of the species in question [77]. Most pseu- 481

dopotentials were taken from the Rappe group pseudopoten- 482

tial library [84], although those for Co and Fe were generated 483

in-house using OPIUM [85–91]. These were scalar relativistic 484

pseudopotentials [92] with nonlinear core corrections [93]. 485

005100-6

XP10325B PRB December 8, 2018 21:59

LINSCOTT, COLE, PAYNE, AND O’REGAN PHYSICAL REVIEW B 00, 005100 (2018)

This is nothing less than the scalar expression U = χ−1
0 −395

χ−1, which is used in scalar linear response. We may conclude396

that the conventional scalar approach and scaled 2 × 2 are397

entirely equivalent.398

Therefore, Hubbard parameters obtained by spin-399

aggregated approaches are not screened by the opposite400

spin channel on the same site. Since they combine both401

like and unlike spin interactions [cf. Eq. (20)], they do not402

correspond to the like-spin-only interaction Ueff = U − J403

(as implied elsewhere) [66]. We could have anticipated this404

result: during a scalar linear-response calculation there is no405

shift in the external potential difference between the two spin406

channels, so (to first order) there is no external driver for407

changes in subspace spin polarization.408

We noted earlier that atomwise inversion formally necessi-409

tates a Hund’s correction, but such a correction is not usually410

included when the conventional linear response approach411

is employed. Given that these methods are equivalent, we412

argue that it is more consistent to include a Hund’s exchange413

correction term [e.g., calculated using Eq. (22)] if using a414

Hubbard correction calculated in the conventional manner.415

The precise functional form of the + J correction needed416

is, however, the subject of ongoing research. Recently, for417

example, Millis and co-workers demonstrated that spin-418

polarized DFT already possesses some degree of intrinsic419

exchange splitting, and they have argued convincingly that420

the contemporary form of the + J correction can overestimate421

exchange splitting [67]. This finding is corroborated by our422

own results discussed later in this paper (e.g., Table VII).423

III. APPLICATION TO A COMPLETE SERIES424

OF HEXAHYDRATED TRANSITION METALS425

AND MANGANESE OXIDE426

In the second half of this work, we explore the ramifica-427

tions of our theoretical developments on two test systems:428

hexahydrated transition metals and manganese oxide.429

In these systems, all of the metal atoms have partially430

filled 3d subshells. Electrons within these subshells are in431

such close proximity to one another that the interplay of their432

spin, charge, and orbital moment are too pronounced to be433

well described by local or semilocal xc functionals [68–71].434

DFT + U may provide a more accurate description of these435

systems [16,26,50,62].436

Manganese oxide (MnO) has a rocksalt structure. At low437

temperatures it is antiferromagnetic [72], and has a band gap438

of approximately 4 eV that is substantially underestimated439

by semilocal functionals.[19] Conventional linear-response440

calculations on MnO yield an excessively large Hubbard441

parameter (U > 7 eV) [73].442

Meanwhile, hexahydrated transition metals are comprised443

of a central first-row transition-metal ion surrounded by six444

water ligands in a tetragonal arrangement [Fig. 3(c)]. Such445

systems bear some resemblance to a fundamental unit of446

transition-metal oxides, as well as organometallic systems447

such as the oxygen evolving complex of photosystem II448

[74,75].449

Depending on the electronic structure of the metal, these450

systems may exhibit Jahn-Teller distortion, resulting in an451

elongated tetragonal structure with two axial waters being452

dxy/xz/yz

dz2/x2−y2

(a)

dxy/xz/yz

dz2

dx2−y2

(b) (c)

FIG. 3. The ground state of the 3d electrons in (a) [Mn(H2O)6]2+

and (b) [Mn(H2O)6]3+. In both systems, the dxy , dxz, and dyz orbitals
have lower energy as they have lobes directed between the ligands
(and hence less overlap with the ligand orbitals). For the doubly
charged system, the system is symmetric and no Jahn-Teller splitting
takes place. In the triply charged system, the molecule distorts into
a D2h symmetry as shown in (c), with the axial bonds (dashed)
fractionally longer than the equatorial bonds (solid).

slightly more distant than their four equatorial counterparts 453

(Fig. 3). 454

A. Computational details 455

All calculations were performed using ONETEP 456

[21,22,35,53,76–78] (order-N electronic total energy 457

package, version 4.3) using the Perdew-Burke-Ernzerhof 458

(PBE) xc functional [6]. 459

For MnO, a square supercell containing 512 atoms was 460

simulated under periodic boundary conditions without explicit 461

k-point sampling. This is a nondiagonal supercell [79] of 462

the four-atom primitive cell, and gives an equivalent k-point 463

sampling scheme that includes both Z and !. (This is crucial 464
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cutoff of 1030 eV. ONETEP uses a basis of nonorthogonal 468
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optimized in situ. Each Mn atom had ten NGWFs; O atoms, 470

four. All NGWFs had a cutoff radius of 11.0a0. 471

For the hexahydrated metals, all calculations were spin 472

polarized, with an energy cutoff of 897 eV. Depending on 473

the species, there were 9, 10, or 13 NGWFs on the transition- 474

metal atom, four on each oxygen, and one on each hydrogen. 475

All NGWFs had 14a0 cutoff radii. An Elstner dispersion 476
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III. RESULTS

A. Band Gap

For the conventional 96 atom unit cell our LDA cal-
culations give lattice parameters of a=13.4445 Å (2.15%
lower than experimental value 13.7020 Å) and c=5.9394
Å (0.89% lower than the experimental value of 5.9850
Å) [37, 38]. The most crucial aspect of the NbO2 crys-
tal structure is the Nb-Nb dimerisation along the c-axis
([001] direction). The lattice parameter we obtain along
this direction is very close to the experimental value,
which is vital since the electronic structure of NbO2 is
known to be highly sensitive to the dimerisation [39, 40].
The short and long Nb-Nb bond lengths at room temper-
ature are 2.71 Å and 3.30 Å respectively [37, 41, 42] com-
pared to the values obtained in our calculation of 2.66 Å
and 3.31 Å, again close to the room temperature values.
Of course it should be noted that the bond length varies
as a function of temperature (roughly 0.1 Å between 100
�C and 800 �C [7, 39]), but no low temperature measure-
ments of the bond length exist in the literature to the
authors’ knowledge.

Our LDA calculated band gap of 0.39 eV is slightly
higher than other LDA calculations [8] (possibly due to
details of the pseudopotential construction), but is still
underestimating the true gap by at least a factor of 2. A
similar trend emerges for the other spectral features, with

slight increase over previous LDA calculations yet still
not meaningfully approaching the experimental values.
The LDA calculated band structure is shown in Fig.1(e),
with the valance band maximum (VBM) at the N point,
and the conduction band minimum (CBM) at the � point
in line with previous reports [8, 14].

The linear response plots used to calculate the U and
J for the Nb and O are shown in Fig.1(c-d), and re-
flect good linear response. There are a number of di↵er-
ent ways of implementing the Hubbard U and Hund’s J
corrections. In many published works, the correction is
applied only the transition metal d orbitals (such as in
Ref. [8]). We consider three possibilities for the specific
form of the correction. The first option is to only add
the +U , not including explicit opposite-spin interaction
terms in the corrective functional (e↵ectively treating J
as being zero). Alternatively, the Dudarev functional [44]
can account for corrections arising from interactions be-
tween like spins, by taking Ue↵ = U � J . Finally, cor-
rections arising from interactions between both like and
unlike spins can be obtained by carrying out full spin po-
larised calculations with DFT+U+J , or equivalently for
non spin-polarised systems, as presented in Ref. [31] by
using the Dudarev functional with Ufull = U � 2J and
↵ = J/2. In all three of these cases, we can then also
apply the same form of the correction to the O 2p sub-
space, resulting in a total of 6 possible implementations
of these U and J values.
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�C and 800 �C [7, 39]), but no low temperature measure-
ments of the bond length exist in the literature to the
authors’ knowledge.

Our LDA calculated band gap of 0.39 eV is slightly
higher than other LDA calculations [8] (possibly due to
details of the pseudopotential construction), but is still
underestimating the true gap by at least a factor of 2. A
similar trend emerges for the other spectral features, with

slight increase over previous LDA calculations yet still
not meaningfully approaching the experimental values.
The LDA calculated band structure is shown in Fig.1(e),
with the valance band maximum (VBM) at the N point,
and the conduction band minimum (CBM) at the � point
in line with previous reports [8, 14].

The linear response plots used to calculate the U and
J for the Nb and O are shown in Fig.1(c-d), and re-
flect good linear response. There are a number of di↵er-
ent ways of implementing the Hubbard U and Hund’s J
corrections. In many published works, the correction is
applied only the transition metal d orbitals (such as in
Ref. [8]). We consider three possibilities for the specific
form of the correction. The first option is to only add
the +U , not including explicit opposite-spin interaction
terms in the corrective functional (e↵ectively treating J
as being zero). Alternatively, the Dudarev functional [44]
can account for corrections arising from interactions be-
tween like spins, by taking Ue↵ = U � J . Finally, cor-
rections arising from interactions between both like and
unlike spins can be obtained by carrying out full spin po-
larised calculations with DFT+U+J , or equivalently for
non spin-polarised systems, as presented in Ref. [31] by
using the Dudarev functional with Ufull = U � 2J and
↵ = J/2. In all three of these cases, we can then also
apply the same form of the correction to the O 2p sub-
space, resulting in a total of 6 possible implementations
of these U and J values.

4

b e

c

b

a

FIG. 1. (a-b) Primitive and conventional units cells for insulating NbO2 (Nb atoms shown in green, O in red), (c-d) Linear
response plots for calculation of Hubbard U and Hund’s J . (e-f) Band structure calculated by spectral function unfolding for
LDA and DFT+U+J respectively, using the implementation described in Refs. [33, 34] and recently demonstrated in Refs.
[35, 36]

III. RESULTS

A. Band Gap

For the conventional 96 atom unit cell our LDA cal-
culations give lattice parameters of a=13.4445 Å (2.15%
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3

under UHV environment [19].

B. Computational Details

The low temperature, insulating phase of NbO2 takes
on a BCT (distorted rutile) crystal structure. The primi-
tive cell for this structure contains 48 atoms and is shown
in Fig.1(a), alongside the 96 atom standard conventional
unit cell in Fig.1(b). The crystallography of this ma-
terial is most usually described in terms of the conven-
tional cell, which is the cell we utilise in this study. It
is worth noting that when discussing crystallographic di-
rections some papers use the distorted rutile (DR) cell
as a reference, and some use the almost equivalent rutile
(R) cell. For clarity, the relations between some impor-
tant directions are as follows: [100]DR ' [110]R, [110]DR

' [100]R. Crystal structures were visualised using the
VESTA package [20].

Norm-conserving pseudopotentials generated with the
OPIUM [21] code were used throughout the study. DFT-
LDA calculations were first carried out in the PWscf
code of the Quantum Espresso suite [22, 23] to deter-
mine the cuto↵ energy and k -point sampling necessary
to converge the total energy to within <1 meV per
atom, and the optimised ionic geometry/unit cell param-
eters. A cuto↵ energy of 60 Ry/815 eV and k -point
sampling of 2⇥2⇥4 for the standard conventional cell
were deemed necessary. These parameters were then
used to inform the parameters chosen for calculations
in the ONETEP [24, 25] linear-scaling DFT code, which
includes a DFT+U+J implementation [26]. A 2⇥2⇥4
supercell consisting of 1536 atoms was used with psinc
spacing equal to a/(3 · 5 · 7)=0.4839 bohr along the
distorted rutile a axes and c/(7·13)=0.4934 bohr along
the distorted rutile c axis. A nonorthogonal generalised
Wannier function (NGWF) cuto↵ radius of 10 bohr was
utilised for both niobium and oxygen. For niobium, there
were 10 NGWFs and 13 valence electrons per atom, com-
pared to 4 NGWFs and 6 valance electrons per atom for
oxygen.

When using a supercell that is not simply a direct scal-
ing of the primitive cell (i.e., when the transformation
matrix S is not diagonal), it is important to verify that
the high symmetry k -points in the Brillouin zone are sam-
pled within the supercell calculations. This is especially
important for determining the band gap in an indirect
gap material like BCT NbO2. Following the method in
Lloyd-Williams and Monserrat [27], in order for a k point
q to be commensurate with the supercell, the vector Q
resulting from the transformation matrix S acting on q
must contain only integers (Eq. 1.). The necessary equa-
tions for determining if a high symmetry point is sampled
are

Sq = Q (1)
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In this case, we can see that the high symmetry points
are correctly sampled, in particular the vital N point
where the valence band maximum is located.
In order to better account for the correlations present

in this system than is provided for in the underlying LDA
functional, we utilise the simplified, rotationally invari-
ant DFT+U+J method of the form presented in Ref.
[28]. Functionals of this type are widely used for calcula-
tions on metal oxides to account for the self interaction
error (SIE) present in approximate exchange correlation
functionals, and the Hund’s J term in particular is ex-
pected to improve the description of spin-flip interactions
[29–32].
Ab-initio calculations of the Hubbard U and Hund’s

J parameters were carried out within the minimum-
tracking linear-response approach described in Linscott
et al. [30], and recently applied successfully to rutile and
anatase TiO2 [31]. For a closed shell system such as that
of NbO2, the ‘scaled 2⇥2’ approach reduces to the ‘sim-
ple 2⇥2’ approach as described in the aforementioned
papers. Within this method, U and J are determined
by the matrix elements f��0

as in Eq. 2, with these ma-
trix elements being determined by Eq. 3. The necessary
equation are

U =
1

2
(f"" + f"#) J = �1

2
(f"" � f"#) (2)

f��0
=

"✓
�vKS

�vext
� 1

◆✓
�n

�vext

◆�1
#��0

(3)

Based on this procedure we obtain U and J values for
niobium and oxygen, as summarised in Table I.

TABLE I. Calculated Hubbard U and Hund’s J parameters
for the Nb 4d and O 2p subspaces in units of eV

Niobium Oxygen
U 2.48 9.02
J 0.23 0.90
Ue↵ = U � J 2.25 8.12
Ufull = U � 2J 2.02 7.22



Trinity College Dublin, The University of Dublin

DFT+U+J: the second easiest way to include JDFT+U+J: the second! easiest way to include J
• See Phys. Rev. B 84, 115108 (2011) for derivation.

• In closed-shell systems, the gap goes like U – 2 J:

• There, also symmetry allows U and J to be 
calculated simultaneously with one set of 
perturbations, e.g. applied to spin-up only.                       
See Phys. Rev. B 101, 245137 (2020).

<latexit sha1_base64="sPVFGXRMr5+03MxIynEqajCreZQ="></latexit>

EU+J =
X

I,�

U � J

2
Tr

⇥
n̂I� � n̂I�n̂I�

⇤
+

J

2
Tr

⇥
n̂I�n̂I�̄

⇤

v̂I�U+J =
U � J

2

⇣
P̂ � 2n̂I�

⌘
+ Jn̂I�̄

<latexit sha1_base64="5AyN7/+3XEj1jLad/Q6g2daCBe4="></latexit>

v̂I�U+J =
U � 2J

2

⇣
P̂ � 2n̂I�

⌘
+

J

2
P̂



Trinity College Dublin, The University of Dublin

5

LDA anatase Ti O

U 3.57 8.56

J 0.29 0.91

Ueff = U � J 3.28 7.66

Ufull = U � 2J 3.00 6.75

TABLE II. First-principles LDA-appropriate Hubbard U and
Hund’s J parameters calculated using the minimum-tracking
linear-response method [49, 70], both for the Ti 3d and O 2p
subspaces of TiO2-anatase. Only the neutral pseudo-atomic
solver configuration Ti0 is used here. Shown also are the
e↵ective Hubbard U parameter of the Dudarev model (Ue↵)
and that which reproduces the DFT+U+J functional (with
minority term IV) for closed-shell systems (Ufull).

the opportunity for direct comparability to the experi-
mental insulating gap. Shown in Table III is the band gap
of TiO2-rutile calculated using LDA and first-principles
DFT+U , DFT+Ue↵ , DFT+Ufull with di↵erent ↵ values,
and explicit DFT+U+J (minority spin term (IV) ne-
glected), both when applied only to the Ti 3d sub-shell
and when applied also to the O 2p sub-shell.

Experimental, first-principles, semi-empirical hybrid,
GW results, and several previous DFT+U results from
the literature are also shown in Table III, for compari-
son. The experimental direct gap quoted [12, 13] is based
on absorption, photoluminescence, and resonant-Raman
scattering data, and is expected to be very reliable due to
the relatively small exciton binding and phonon coupling
e↵ects in rutile [11], and moreover in light of its good
agreement with available inverse photoemission data [74].

The LDA yields a Kohn-Sham band gap of 1.96 eV,
much lower than the experimental band gap of 3.03 eV,
as expected given its absence of a derivative discontinu-
ity. Regardless of the Hund’s J incorporation scheme
used, and as is generally attested in the literature on cal-
culations with J = 0 eV, first-principles DFT+U applied
to Ti 3d states only performs poorly and here predicts a
band gap of 2.17�2.24 eV. The inadequacy of the conven-
tional DFT+U subspace definition can be explained by
comparing the very di↵erent valence and the conduction
band edges characters seen in all of the local density of
states plots shown in Fig. 1, and additionally motivated
by recalling the very similar degree of spatial localization
of Ti 3d and O 2p atomic orbitals (see Fig. 3). The va-
lence (conduction) band edge is left almost una↵ected by
applying the Hubbard correction only to the Ti 3d (O
2p) sub-shell, regardless of any reasonable Hubbard U
parameter (hence, unreasonable values have been tested
in the prior literature). In qualitative agreement with
that, we observe that the impact of the method on the
band-gap increases substantially as soon as correction is
also applied to both subshells, within DFT+Ud,p (as we
show in detail in Table III).

Focusing on our own first-principles DFT+Ud,p re-
sults and comparing with experiment, we find that when

TiO2-rutile Egap

DFT (LDA) 1.96

Ud Ud,p

DFT+U 2.24 3.59

DFT+Ueff = U � J 2.21 3.38

DFT+Ufull = U � 2J,↵ = �J/2 2.17 3.32

DFT+Ufull = U � 2J 2.18 3.18

DFT+Ufull = U � 2J,↵ = J/2 2.20 3.04

DFT+U+J (no minority spin term) 2.20 3.04

Experiment [12, 13] 3.03

LDA [48] 1.79

PBE [19] 1.88

PBE [75] 1.86

PBE [76] 1.77

TB-mBJ [77] 2.60

SCAN [78] 2.23

HSE06 [79] 3.3

HSE06 [19] 3.39

HSE06 (↵ = 0.2) [76] 3.05

sX Hybrid [75] 3.1

LDA+G0W0 [18] 3.34

PBE+G0W0 [19] 3.46

HSE+G0W0 [19] 3.73

DFT+U (U=7.5 eV) [80] 2.83

DFT+U (U=10 eV) [81] 2.97

DFT+Ud (U = 3.25 eV) [82] 2.01

DFT+Ud,p (Ud = 3.25 eV, Up = 10.65 eV) [82] 3.67

DFT+Ud,p (Ud = 3.25 eV, Up = 5.0 eV) [82] 2.69

DFT+Ud,p (Ud = 0.15 eV, Up = 7.34 eV) [83] 2.83

TABLE III. The fundamental band gap (in eV) of TiO2-rutile
calculated within DFT(LDA), DFT+U with Hund’s J ne-
glected, when treated within the Dudarev model (Ue↵), and
when treated in a matter which fully reproduces DFT+U+J
using only DFT+U code for closed-shell systems (Ufull), both
when treated with (↵ = �J/2) and without (↵ = J/2) its
minority-spin (term IV). DFT+Ud and DFT+Ud,p results are
separately shown, using parameters calculated from first prin-
ciples using the minimum-tracking linear-response method,
using only the neutral pseudo-atomic solver configuration Ti0.
Prior experimental, first-principles local, semi-local, meta-
generalized-gradient, and semi-empirical hybrid functional;
perturbative G0W0; empirical, first-principles SCF linear-
response (Ref. 82), and ACBN0 (Ref. 83) DFT+U values are
provided for convenient comparison. Our central results are
highlighted in bold.
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son. The experimental direct gap quoted [12, 13] is based
on absorption, photoluminescence, and resonant-Raman
scattering data, and is expected to be very reliable due to
the relatively small exciton binding and phonon coupling
e↵ects in rutile [11], and moreover in light of its good
agreement with available inverse photoemission data [74].

The LDA yields a Kohn-Sham band gap of 1.96 eV,
much lower than the experimental band gap of 3.03 eV,
as expected given its absence of a derivative discontinu-
ity. Regardless of the Hund’s J incorporation scheme
used, and as is generally attested in the literature on cal-
culations with J = 0 eV, first-principles DFT+U applied
to Ti 3d states only performs poorly and here predicts a
band gap of 2.17�2.24 eV. The inadequacy of the conven-
tional DFT+U subspace definition can be explained by
comparing the very di↵erent valence and the conduction
band edges characters seen in all of the local density of
states plots shown in Fig. 1, and additionally motivated
by recalling the very similar degree of spatial localization
of Ti 3d and O 2p atomic orbitals (see Fig. 3). The va-
lence (conduction) band edge is left almost una↵ected by
applying the Hubbard correction only to the Ti 3d (O
2p) sub-shell, regardless of any reasonable Hubbard U
parameter (hence, unreasonable values have been tested
in the prior literature). In qualitative agreement with
that, we observe that the impact of the method on the
band-gap increases substantially as soon as correction is
also applied to both subshells, within DFT+Ud,p (as we
show in detail in Table III).

Focusing on our own first-principles DFT+Ud,p re-
sults and comparing with experiment, we find that when

TiO2-rutile Egap

DFT (LDA) 1.96

Ud Ud,p

DFT+U 2.24 3.59

DFT+Ueff = U � J 2.21 3.38

DFT+Ufull = U � 2J,↵ = �J/2 2.17 3.32

DFT+Ufull = U � 2J 2.18 3.18

DFT+Ufull = U � 2J,↵ = J/2 2.20 3.04

DFT+U+J (no minority spin term) 2.20 3.04

Experiment [12, 13] 3.03

LDA [48] 1.79

PBE [19] 1.88

PBE [75] 1.86

PBE [76] 1.77

TB-mBJ [77] 2.60

SCAN [78] 2.23

HSE06 [79] 3.3

HSE06 [19] 3.39

HSE06 (↵ = 0.2) [76] 3.05

sX Hybrid [75] 3.1

LDA+G0W0 [18] 3.34

PBE+G0W0 [19] 3.46

HSE+G0W0 [19] 3.73

DFT+U (U=7.5 eV) [80] 2.83

DFT+U (U=10 eV) [81] 2.97

DFT+Ud (U = 3.25 eV) [82] 2.01

DFT+Ud,p (Ud = 3.25 eV, Up = 10.65 eV) [82] 3.67

DFT+Ud,p (Ud = 3.25 eV, Up = 5.0 eV) [82] 2.69

DFT+Ud,p (Ud = 0.15 eV, Up = 7.34 eV) [83] 2.83

TABLE III. The fundamental band gap (in eV) of TiO2-rutile
calculated within DFT(LDA), DFT+U with Hund’s J ne-
glected, when treated within the Dudarev model (Ue↵), and
when treated in a matter which fully reproduces DFT+U+J
using only DFT+U code for closed-shell systems (Ufull), both
when treated with (↵ = �J/2) and without (↵ = J/2) its
minority-spin (term IV). DFT+Ud and DFT+Ud,p results are
separately shown, using parameters calculated from first prin-
ciples using the minimum-tracking linear-response method,
using only the neutral pseudo-atomic solver configuration Ti0.
Prior experimental, first-principles local, semi-local, meta-
generalized-gradient, and semi-empirical hybrid functional;
perturbative G0W0; empirical, first-principles SCF linear-
response (Ref. 82), and ACBN0 (Ref. 83) DFT+U values are
provided for convenient comparison. Our central results are
highlighted in bold.

– Lessons learned:                                            
O 2p correction is needed;                              
smooth neutral orbitals seem best;  
the DFT+U+J potential seems good.

DFT(LDA)+U+J density of states for TiO2
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– Lessons learned:                                            
The arbitrariness with respect to orbital 
choice does not go away. 

– Again O 2p correction restores the lattice.
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TiO2-anatase Egap

DFT (LDA) 2.21

+Ud +Ud,p

DFT+U 2.51 4.13

DFT+Ueff = U � J 2.48 3.88

DFT+Ufull = U � 2J,↵ = �J/2 2.41 3.81

DFT+Ufull = U � 2J 2.45 3.65

DFT+Ufull = U � 2J,↵ = J/2 2.49 3.50

DFT+U+J(no minority spin term) 2.49 3.50

Experiment [11] 3.47

PBE [19] 1.94

TB-mBJ [77] 3.01

SCAN [78] 2.56

HSE06 [19, 79] 3.60

LDA+G0W0 [18] 3.56

PBE+G0W0 [11] 3.61

PBE+G0W0 [19] 3.73

HSE+G0W0 [19] 4.05

DFT+Ud (U=7.5 eV) [80] 3.27

DFT+Ud (U = 3.23 eV) [82] 2.43

DFT+Ud,p (Ud = 3.23 eV, Up = 10.59 eV) [82] 4.24

DFT+Ud,p (Ud = 3.23 eV, Up = 5.0 eV) [82] 3.23

TABLE IV. The band gap (in eV) of TiO2-anatase calcu-
lated within DFT(LDA), DFT+U with Hund’s J neglected,
when treated within the Dudarev model (Ue↵), and when
treated in a matter which fully reproduces DFT+U+J us-
ing only DFT+U code for closed-shell systems (Ufull), both
when treated with (↵ = �J/2) and without (↵ = J/2)
its minority-spin (term IV). DFT+Ud and DFT+Ud,p re-
sults are separately shown, using parameters calculated from
first principles using the minimum-tracking linear-response
method, using only the neutral pseudo-atomic solver config-
uration Ti0. Prior experimental, first-principles local, semi-
local, meta-generalized-gradient, and semi-empirical hybrid
functional; perturbative G0W0; empirical and first-principles
SCF linear-response DFT+U (Ref. 82) values from the liter-
ature are provided for convenient comparison. Our central
results are highlighted in bold.

DFT+U , DFT+Ue↵ , DFT+Ufull, and DFT+U+J (mi-
nority spin term (IV) included, spin-averaged, and ne-
glected), both when applied only to the Ti 3d sub-shell
and when applied also to the O 2p sub-shell. The cor-
responding NGWF-partitioned Mulliken LDOS plots are
show in in Fig. 2. We anticipate a slight overestimation
in our calculated gap values for TiO2-anatase, due to
our necessarily finite e↵ective sampling of the Brillouin
zone. The band gap of anatase is of indirect character
and, while our sampling is chosen to closely sample the
LDA band edges, we cannot be guaranteed to precisely
sample the valence band maximum (most studies hold
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FIG. 2. The total and local generalized Kohn-Sham density
of states (LDOS) of pristine TiO2-anatase calculated within
DFT(LDA), DFT+U with Hund’s J neglected, when treated
within the Dudarev model (Ue↵), and when treated in a mat-
ter which fully reproduces DFT+U+J using only DFT+U
code for closed-shell systems (Ufull), both when treated with
(↵ = �J/2) and without (↵ = J/2) its minority-spin (term
IV). The spectrum is partitioned on a per-species basis using
Mulliken analysis based on the variationally optimized NG-
WFs. DFT+Ud,p results only are shown, using parameters
calculated from first principles using the minimum-tracking
linear-response method, using only the Ti0 pseudo-atomic
solver configuration , and a Gaussian broadening of 0.1 eV. In
order to show the separate e↵ects of the corrective functionals
tested on the valence and conduction bands, each panel uses
the mid-gap energy of the DFT(LDA) calculation for 0 eV.

the fundamental gap of rutile to be direct at �, on the
other hand, which we do sample). Again, experimental,
first-principles, semi-empirical hybrid, many-body per-
turbation theory, and several previous DFT+U results
from the literature are shown for comparison.
While anatase has been thoroughly studied using op-
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In this Supplementary Material, we describe an inves-
tigation into how the first-principles DFT+U+J correc-
tion, when applied to both Ti 3d and O 2p subspaces,
a↵ects the predicted internal ionic geometry and equilib-
rium unit cell volume of rutile and anatase TiO2. We
first, however, describe the Computational Details used
overall, i.e., both here and in the main text.

I. COMPUTATIONAL DETAILS

Initial crystallographic information for TiO2-rutile and
TiO2-anatase were adopted from Refs. 1 and 2. Norm-
conserving scalar-relativistic LDA pseudo-potentials
were produced using the pseudo-potential generator
OPIUM [3]. Following transferability testing, a Ti3+

configuration with semi-core 3s and 3p orbitals in the va-
lence and with relatively small, demanding cut-o↵ radii
of 1.54 a0 (for s), 1.70 a0 (p), and 1.82 a0 (d), was cho-
sen. Full geometry relaxation were performed with vari-
able cell parameters at a high plane-wave cut-o↵ energy
Ecut (75 Ha or approximately 2040 eV) and automat-
ically generated 3 ⇥ 3 ⇥ 5 (TiO2-rutile) and 5 ⇥ 5 ⇥ 3
(conventional-cell TiO2-anatase) Monkhorst-Pack Bril-
louin zone sampling grids using the Quantum Espresso
(QE) code [4, 5]. The converged cell parameters were
used to construct unfolded super-cells with 270 and 900
atoms, respectively, in order to emulate the same Bril-
louin zone sampling with real-valued Kohn-Sham orbitals
within the ONETEP code [6]. This is a linear-scaling im-
plementation of approximate KS-DFT using two nested
optimization loops for the density kernel and a mini-
mal set of non-orthogonal generalized Wannier functions
(NGWFs) [7, 8].

An under-pinning basis of 31 52 = 75 psinc functions
in all directions for TiO2-rutile (corresponding to the ef-
fective kinetic energy cut-o↵s of ⇠ 1776 eV, ⇠ 1776 eV,
and ⇠ 1552 eV), and 31 52 = 75 in the x- and y-directions
and 31 72 = 147 in z-direction for TiO2-anatase (corre-
sponding to ⇠ 945 eV, ⇠ 945 eV, and ⇠ 1578 eV respec-
tively), provided a basis set associated error of  1 meV
in the total energy per atom. A total of 13 variation-
ally optimized NGWFs initially centred on Ti atoms were
used, to complete the second and third periods up to Kr,
and a total 4 NGWFs variationally optimized NGWFs
initially centred on O atoms to complete the period up
to Ar. A converged, common NGWF cut-o↵ radius of
12 a0 was used for both species, with the same total en-

ergy tolerance. For the band gaps reported in the main
text but not here in the Supplementary Material, a sec-
ond set of NGWFs, with the number and cut-o↵ radii,
where then added and variationally optimised, follow-
ing Ref. 9, in order to reproduce the Kohn-Sham states
around the conduction-band minimum. For Ti0 NGWF
initial guesses, this makes a only small improvement to
the predicted gaps, typically on the order of 5 meV, but
the e↵ect is significant (order of 0.1 eV) for Ti3+ initial
guesses. We emphasise that, for energies much above the
conduction-band edges, the conduction band parts of the
LDOS plots presented in the main text are qualitatively
but not necessarily quantitatively reliable.
A discrete perturbation strength grid, �↵" =

{0,±0.01,±0.10,±0.50,±1.00} eV was used to calcu-
late the Hubbard U and Hund’s J parameters, without
restarts in order to remove any risk of premature conver-
gence declaration and hence under-estimated response.
This was applied to a single spin channel only, following
the 2 ⇥ 2 procedure introduced in Ref. 10. A smooth
response was obtained for all matrix elements for both
species, Ti 3d and O 2p, and for both crystal structures.

II. EFFECTS OF DFT+U+J ON IONIC

GEOMETRY

(a) Rutile (b) Anatase

FIG. 1. Schematic crystal structures of TiO2-rutile and TiO2-
anatase.

A. Geometry optimization procedure

For the purposes only of this Supplemental Mate-
rial, the same QE LDA geometry optimization proce-
dure was repeated for TiO2-rutile and TiO2-anatase, us-
ing 10�7 Ry, 10�5 Ry/Bohr and 10�10 Ry convergence
thresholds for the total energy, forces for ionic minimiza-
tion, and self-consistency, respectively, but with fixed lat-
tice vectors corresponding to ±1% and ±2% isotropic
strain. As ONETEP is not equipped to perform cell-wall

10

bitals of O atoms, symbolically giving DFT+Ud,p, read-
ily addresses the aforementioned gap saturation problem
and provides a more accurate description of the band
structure around the Fermi level [45–48].

Appendix B: The e↵ects on the density of states of
the choice of pseudo-atomic solver configuration for

generating the Ti 3d DFT+U subspace

TiO2-rutile Egap

Subspace definition Ti0 Ti3+

DFT(LDA) 1.96 1.96

+Ud +Ud,p +Ud +Ud,p

U 2.24 3.59 2.69 4.20

Ueff = U � J 2.21 3.38 2.63 3.94

Ufull = U � 2J,↵ = �J/2 2.17 3.32 2.52 3.81

Ufull = U � 2J from Ti0 2.18 3.18 2.31 3.33

Ufull = U � 2J from Ti3+ 2.38 3.46 2.57 3.69

Ufull = U � 2J,↵ = J/2 2.20 3.04 2.62 3.58

U+J (no minority spin term) 2.20 3.04 2.64 3.58

TABLE V. This table highlights the arbitrariness of DFT+U
with respect to the targeted subspace choice, which is not
compensated for in this system by first-principles calculation
of the U and J parameters. Shown is the band gap (in eV)
of TiO2-rutile calculated within DFT(LDA), DFT+U with
Hund’s J neglected, when treated within the Dudarev model
(Ue↵), and when treated in a matter which fully reproduces
DFT+U+J using only DFT+U code (Ufull). DFT+Ud and
DFT+Ud,p results are separately shown, and these depend on
the pseudo-atomic solver configuration (neutral or 3+) used
to define the targeted Ti 3d subspace, together with the cor-
responding subspace-dependent U and J parameters. For the
intermediate case of Ufull with ↵ = 0, i.e., DFT+U+J with
its minority term split over the two spins, we show the e↵ect
on the gap of separately changing the subspace used to cal-
culate the parameters, and the subspace used to apply the
parameters, revealing that these e↵ects combine to reinforce,
not to cancel, the subspace-dependence in this system. The
gaps from “mismatched” calculations, with parameters from
the other subspace type, are shown in bold.

For the specific case of rutile, we investigate in de-
tail here the e↵ect of varying the charge configuration
for Ti used in the pseudo-atomic solver [72], which con-
structs the set of the pseudo-atomic orbitals defining the
3d subspace of Ti. The neutral configuration is perhaps a
natural choice, giving the relatively smooth, di↵use sub-
space shown in Fig. 3. This results in less pressure on
the plane-wave convergence and, more importantly, it
does not rely on any prior chemical intuition. We also
investigated the 3+ atomic charge configuration, as a
slightly more “informed” spatially localized subspace test
case. Given the LDA-appropriate U and J parameters
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FIG. 4. The total and local generalized Kohn-Sham den-
sity of states (LDOS) of pristine TiO2-rutile calculated within
DFT+Ud, separately for Ti0 and Ti3+ subspace definitions,
within DFT+Ud+Jd for the same two subspace definitions,
and finally within DFT+Ud,p+Jd,p for the Ti3+ definition.
The spectrum is partitioned on a per-species basis using Mul-
liken analysis based on the variationally optimized NGWFs.
Parameters where calculated from first principles using the
minimum-tracking linear-response method, and a Gaussian
broadening of 0.1 eV was used. Each panel uses the mid-gap
energy of the DFT+Ud (Ti0) calculation for 0 eV.

calculated for each of the two subspace types and pre-
sented in Table I, we performed the matching DFT+U ,
DFT+Ue↵, and DFT+U+J band-gap calculations, both
within DFT+Ud and DFT+Ud,p . We also performed
the “cross” calculations in the case of ↵ = 0, i.e., where
we used the 3+ subspace parameters for correcting the
neutral subspace, and vice-versa, in order to illustrate
the separate e↵ects of over-localizating the projectors.

The results of these tests are shown in Table V. We
find that first-principles calculation of the Hubbard U

DFT(LDA)+U+J density of states for TiO2
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FIG. 5. The difference in Hubbard parameters for four hexahy-
drated transition metals, as calculated via the various linear-response
schemes and using two alternative simulation setups (eV).

no such difficulties, justifying the use of the rescaling factors602

λU/J . This work will consider simple 2 × 2 no further.603

3. Dependence on simulation settings604

The results of linear-response calculations are sensitive605

to the precise settings of a calculation. Figure 5 shows the606

difference in Hubbard parameters as obtained using two quite607

different simulation schemes. Both sets of calculations were608

performed on the same physical systems, but they differed609

in (a) the pseudopotentials used (Rappe vs in-house); (b)610

the electrostatic truncation scheme used (padded cell with611

a spherical cutoff [83] vs a Martyna-Tuckerman correction612

[96]); and (c) the resolution of the fine grid used for calcu-613

lating products of basis functions (a factor of 2 vs a factor of614

4 finer than the standard grid). The majority of the Hubbard615

parameters match to within 1 eV, except for those that relate616

to the response of a nearly fully occupied subspace, where the617

response is extremely changeable.618

4. A closed-shell system619

Linear-response calculations were also performed on620

[Zn(H2O)6]2+. Zn2+ is not strictly a transition metal, as its621

3d shell is filled. Linear-response calculations on closed-shell622

systems tend to be troublesome [61,63], possibly due to the623

response becoming nonlinear [64].624

The results of our calculations are listed in Table III. These625

calculations were performed for two different definitions of626

the Hubbard projectors. In ONETEP these are defined using627

TABLE III. Values of U and J (eV) for the 3d subspace of Zn
in hexahydrated zinc, calculated using the various linear-response
schemes and two alternative sets of Hubbard projectors (as defined
by the net charge configuration of the Zn atom in a pseudoatomic
solver).

PAO charge +0 +2

Scalar U 10.05 ± 0.03 34.77 ± 0.01
Averaged 1 × 1 U 11.60 ± 0.04 44.64 ± 0.02
1 × 1 U↑ 11.67 ± 0.06 44.65 ± 0.03

U↓ 11.53 ± 0.06 44.63 ± 0.02
Simple 2 × 2 U 10.08 ± 0.03 34.79 ± 0.02

J 1.75 ± 0.05 1.47 ± 0.03
Scaled 2 × 2 U 10.08 ± 0.03 34.79 ± 0.02

J 1.75 ± 0.05 1.47 ± 0.03

FIG. 6. The indirect band gap of MnO, as calculated by various
computational approaches, as well as experimental results (with error
bars). All-electron calculations are denoted “AE.”

pseudoatomic orbitals (PAOs); that is, the DFT solutions of 628

the isolated atom/ion with the pseudopotential [77,97,98]. 629

Table III lists the Hubbard parameters for when the pseu- 630

doatomic problem was solved with a total charge of 0 and 631

+2, keeping the pseudopotential itself fixed. The Hubbard 3632

projectors corresponding to the neutral pseudoatom are more 633

diffuse than those for the +2 case. 634

We find that U is exceptionally large as given by both the 635

scalar and spin-resolved linear response schemes, and with 636

either definition of the Hubbard projectors. The dependence 637

of the result on the Hubbard projectors is very striking, and 638

is the most dramatic case that we have seen. But what is 639

more remarkable is the robustness of these calculations (as 640

shown by the small uncertainties). Crucially, this robust- 641

ness is not due to the fact that some schemes avoid matrix 642

inversion: the uncertainties are similar for schemes where 643

matrix inversion is necessary (2 × 2) and those where it is not 644

(1 × 1), and in no case did we observe evidence of nonlinear 645

response. 646

C. Properties of MnO 647

We calculated the band gap (Fig. 6) and the local magnetic 648

moment of Mn (Fig. 7) for bulk MnO using Hubbard and 649

Hund’s parameters obtained via our schemes (and listed in 650

Tables I and II). Semilocal functionals dramatically under- 4651

estimate the band gap of MnO; the local/semilocal results 652

presented in Fig. 6 underestimate it by 2.3 eV on average 653

(with a standard deviation of 1.0 eV). They also underesti- 654

mate the local magnetic moment (by 0.35 ± 0.14 µB). More 655

005100-9

MnO:	another	challenging	test	for	DFT

– Best	available	experiment

– DFT+U+J	(cost	similar	to	DFT)

– Standard	DFT

– HSE	hybrid	DFT

– Many-body	beyond	DFT
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FIG. 1. Deviation of the total energy E in eV, of the He atom/ion
for different values of spin-up (n!) and spin-down (n") occupancy
using the PBE exchange-correlation functional [3]. The PBE total
energy is assumed to be exact at integer values of n! and n" for the
He species. The exact energy from the flat plane condition is denoted
as EFP.

Unlike Eq. (2), here the corrections are given in terms of
subspace occupancy matrix elements

nIσ
mm′ =

〈
φI

m

∣∣ρ̂σ
∣∣φI

m′
〉
, (4)

where ρ̂σ is the spin-σ Kohn-Sham density operator and {φm}
are the set of atomically localized orbitals at atom I (the

atomic site index is often suppressed for clarity). Equation (3)
is written in the basis of localized orbitals that diagonalize
this subspace occupancy matrix. In the case where (i) the
fractional occupancy at the atomic site is limited to the s-spin
channel of one orbital φm, i.e., ns

mm = N − N0 and (ii) all other
orbitals φm′ are fully occupied or unoccupied, Dudarev’s 1998
functional provides a perfect correction for local-MSIE.

Despite DFT+U ’s success in alleviating local-MSIE in this
limiting case, here we stress two points. First, the DFT+U
method was originally derived from the Hubbard model and
it is merely fortuitous that it acts as a correction to local-
MSIE. Second, the DFT+U method does not correct static
correlation error and will therefore not satisfy the local flat
plane condition.

In this Letter, we instead derive a DFT+U -type functional,
disregarding entirely its connection with the Hubbard model
and instead motivating its form entirely on the local analog of
the flat plane condition. Such a functional should, for a single
orbital subspace, satisfy the following four key conditions.

(1) Be a continuous function of the subspace electron
count N and subspace magnetization M.

(2) Yield no correction at integer values of N and M. This
is desirable because (semi-)local functionals are expected to
yield accurate total energies in this case.

(3) Have a constant curvature of −U σ with respect to nσ .
This is desirable because (semi-)local functionals are expected
to have a spurious curvature with respect to nσ due to their
deviation from the local flat plane condition.

(4) Have a constant curvature of J with respect to M. This
is desirable because (semi-)local functionals are expected to
have a spurious curvature with respect to M, again due to their
deviation from the local flat plane condition.

The functional which satisfies these four key conditions is
BLOR (Burgess-Linscott-O’Regan), given for each site by

EBLOR =






U ! + U "

4
Tr[N̂ − N̂2] + J

2
Tr[M̂2 − N̂2] + U ! − U "

4
Tr[M̂ − N̂M̂], Tr[N̂] ! Tr[P̂].

U ! + U "

4
Tr[(N̂ − P̂) − (N̂ − P̂)2]

︸ ︷︷ ︸
Symmetric-MSIE term

+ J
2

Tr[M̂2 − (N̂ − 2P̂)2]
︸ ︷︷ ︸

SCE term

+ U ! − U "

4
Tr[M̂ − N̂M̂]

︸ ︷︷ ︸
Asymmetric-MSIE term

, Tr[N̂] > Tr[P̂].
(5)

Here P̂ is the subspace projection operator P̂ =
∑

m |φm〉 〈φm|.
The subspace occupancy and magnetization operators can be
expressed in terms of the spin-resolved subspace occupancy
operators N̂ = n̂! + n̂" and M̂ = n̂! − n̂", where n̂σ = P̂ρ̂σ P̂.
The magnitude of the correction is controlled by three scalars:
U !, U ", and J , which correspond, respectively, to the cur-
vature with respect to n!, n", and M. A full derivation of
BLOR is given in S-I. One can show that conditions (1) to
(4) are uniquely satisfied by BLOR (see S-II). The lower and
upper versions of the functional have a similar form (the lower
version of BLOR is the case where Tr[N̂] ! Tr[P̂]).

The first term is referred to as the symmetric-MSIE term
because, for a single orbital subspace, it yields zero correction
at integer values of N and yields its maximum correction at
N = 1

2 , 3
2 as shown in the left panel of Fig. 2.

The second term is labeled as the SCE term because, for
a single-orbital subspace, it yields zero correction when the
subspace is maximally spin polarized and yields its maximum
correction at M = 0 for a given value of N , as shown in the
middle panel of Fig. 2.

The asymmetric-MSIE term will contribute to EBLOR when
an effective magnetic field acts on the subspace. In this case,
we cannot assume that the curvatures U ! and U " are equal
in magnitude. This effective magnetic field may be caused by
an external magnetic field acting on the isolated atomic site.
More notably, in practical calculations, the target subspace
will not be entirely isolated from its surrounding environment,
such as the 3d subspace of face-centered cubic nickel. The
3d atomic subspace will experience an internal exchange-
correlation magnetic field from the surrounding nickel atoms

L121115-2
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FIG. 1. Deviation of the total energy E in eV, of the He atom/ion
for different values of spin-up (n!) and spin-down (n") occupancy
using the PBE exchange-correlation functional [3]. The PBE total
energy is assumed to be exact at integer values of n! and n" for the
He species. The exact energy from the flat plane condition is denoted
as EFP.

Unlike Eq. (2), here the corrections are given in terms of
subspace occupancy matrix elements

nIσ
mm′ =

〈
φI

m

∣∣ρ̂σ
∣∣φI

m′
〉
, (4)

where ρ̂σ is the spin-σ Kohn-Sham density operator and {φm}
are the set of atomically localized orbitals at atom I (the

atomic site index is often suppressed for clarity). Equation (3)
is written in the basis of localized orbitals that diagonalize
this subspace occupancy matrix. In the case where (i) the
fractional occupancy at the atomic site is limited to the s-spin
channel of one orbital φm, i.e., ns

mm = N − N0 and (ii) all other
orbitals φm′ are fully occupied or unoccupied, Dudarev’s 1998
functional provides a perfect correction for local-MSIE.

Despite DFT+U ’s success in alleviating local-MSIE in this
limiting case, here we stress two points. First, the DFT+U
method was originally derived from the Hubbard model and
it is merely fortuitous that it acts as a correction to local-
MSIE. Second, the DFT+U method does not correct static
correlation error and will therefore not satisfy the local flat
plane condition.

In this Letter, we instead derive a DFT+U -type functional,
disregarding entirely its connection with the Hubbard model
and instead motivating its form entirely on the local analog of
the flat plane condition. Such a functional should, for a single
orbital subspace, satisfy the following four key conditions.

(1) Be a continuous function of the subspace electron
count N and subspace magnetization M.

(2) Yield no correction at integer values of N and M. This
is desirable because (semi-)local functionals are expected to
yield accurate total energies in this case.

(3) Have a constant curvature of −U σ with respect to nσ .
This is desirable because (semi-)local functionals are expected
to have a spurious curvature with respect to nσ due to their
deviation from the local flat plane condition.

(4) Have a constant curvature of J with respect to M. This
is desirable because (semi-)local functionals are expected to
have a spurious curvature with respect to M, again due to their
deviation from the local flat plane condition.

The functional which satisfies these four key conditions is
BLOR (Burgess-Linscott-O’Regan), given for each site by

EBLOR =






U ! + U "

4
Tr[N̂ − N̂2] + J

2
Tr[M̂2 − N̂2] + U ! − U "

4
Tr[M̂ − N̂M̂], Tr[N̂] ! Tr[P̂].

U ! + U "

4
Tr[(N̂ − P̂) − (N̂ − P̂)2]

︸ ︷︷ ︸
Symmetric-MSIE term

+ J
2

Tr[M̂2 − (N̂ − 2P̂)2]
︸ ︷︷ ︸

SCE term

+ U ! − U "

4
Tr[M̂ − N̂M̂]

︸ ︷︷ ︸
Asymmetric-MSIE term

, Tr[N̂] > Tr[P̂].
(5)

Here P̂ is the subspace projection operator P̂ =
∑

m |φm〉 〈φm|.
The subspace occupancy and magnetization operators can be
expressed in terms of the spin-resolved subspace occupancy
operators N̂ = n̂! + n̂" and M̂ = n̂! − n̂", where n̂σ = P̂ρ̂σ P̂.
The magnitude of the correction is controlled by three scalars:
U !, U ", and J , which correspond, respectively, to the cur-
vature with respect to n!, n", and M. A full derivation of
BLOR is given in S-I. One can show that conditions (1) to
(4) are uniquely satisfied by BLOR (see S-II). The lower and
upper versions of the functional have a similar form (the lower
version of BLOR is the case where Tr[N̂] ! Tr[P̂]).

The first term is referred to as the symmetric-MSIE term
because, for a single orbital subspace, it yields zero correction
at integer values of N and yields its maximum correction at
N = 1

2 , 3
2 as shown in the left panel of Fig. 2.

The second term is labeled as the SCE term because, for
a single-orbital subspace, it yields zero correction when the
subspace is maximally spin polarized and yields its maximum
correction at M = 0 for a given value of N , as shown in the
middle panel of Fig. 2.

The asymmetric-MSIE term will contribute to EBLOR when
an effective magnetic field acts on the subspace. In this case,
we cannot assume that the curvatures U ! and U " are equal
in magnitude. This effective magnetic field may be caused by
an external magnetic field acting on the isolated atomic site.
More notably, in practical calculations, the target subspace
will not be entirely isolated from its surrounding environment,
such as the 3d subspace of face-centered cubic nickel. The
3d atomic subspace will experience an internal exchange-
correlation magnetic field from the surrounding nickel atoms

L121115-2

– BLOR is an exactified DFT+U functional based on idea of measuring and correcting 
self-interaction and static correlation error in situ. For single-orbital subspaces, it 
can be shown to be unique, and it differs from conventional DFT+U+J. 
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FIG. 2. The left panel presents the symmetric-MSIE term for an s-orbital subspace as a function of spin up (n�) and spin down
(n⌫) subspace occupancy. The centre panel presents the SCE term as a function of n� and n⌫. The right panel presents the
sum of the symmetric-MSIE and asymmetric-MSIE terms as a function of n� and n⌫.

when an e↵ective magnetic field acts on the subspace.
In this case, we cannot assume that the curvatures U

�

and U
⌫ are equal in magnitude. This e↵ective magnetic

field may be caused by an external magnetic field acting
on the isolated atomic site. More notably, in practical
calculations the target subspace will not be entirely iso-
lated from its surrounding environment, such as the 3d
subspace of face-centered cubic nickel. The 3d atomic
subspace will experience an internal exchange-correlation

magnetic field from the surrounding nickel atoms and
hence we expect that U � 6= U

⌫ for this system. The dif-
ference in magnitude is accounted for in the asymmetric-
MSIE term. The combination of the symmetric- and
asymmetric-MSIE terms is depicted in the right panel
of figure 2, which unlike the left panel, shows a di↵er-
ent curvature along the maximally spin up polarised line
compared to the maximally spin down polarised line.
BLOR can also be expressed in terms of subspace oc-

cupancy matrix elements as:
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BLOR has many similarities with existing function-
als. For example, Himmetoglu’s [38] DFT+U + J func-
tional was recently modified by Bajaj et al [39, 40] to
obtain jmDFT, a functional designed to correct for de-
viations from the global flat plane condition. However,
jmDFT fails to satisfy conditions 3 and 4. Meanwhile,
setting U

� = Ue↵ , the first two terms of BLOR in the
lower-half plane are equal to Dudarev’s 1998 Hubbard
functional. Furthermore, for non-spin polarised systems
we have that U

� = U
⌫ = U � J and the BLOR func-

tional in the lower half plane simplifies to Moynihan et
al’s DFT+U+J method with self consistent formulae for
the U and J parameters [41].

Before BLOR is applied to test systems, the corrective
parameters U� and J must first be carefully chosen. Our
aim is to use BLOR to explicitly enforce the EHxc flat
plane condition on localized states embedded within a
material environment. To achieve this, one can define the

local curvature with respect to the spin resolved subspace
occupancy n

� as:

U
� =

✓
@
2
E

approx
Hxc

[⇢loc(r)]

@(n�)2

◆

n��

, (7)

and with respect to the subspace magnetisation as:

J = �
✓
@
2
E

approx
Hxc

[⇢loc(r)]

@(M)2

◆

N

, (8)

where N & M are the subspace electron count and mag-
netisation, and ⇢loc(r) is the electron density associated
with the localized electrons. By explicitly enforcing the
EHxc flat plane condition on localized states we have im-
plicitly assumed that all local curvature is spurious [32].
This is true for an ensemble of isolated atomic/molecular
species but in most practical cases this is an approxima-
tion.
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– Variational cDFT optimizability proof:                                                                                 
D. D. O’Regan and G. Teobaldi,                            
Phys. Rev. B 94, 035159 (2016). 

– Periodic boundary correction shown here:                                                 
D. Turban, et al., Phys. Rev. B 93, 165102 (2016).
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C. Computational Details

For all calculations we employ the LDA functional and
norm-conserving pseudopotentials. The energy cutoff is
chosen as 750 eV. We use 1 NGWF per hydrogen atom
and 4 NGWFs per carbon atom. For the localisation ra-
dius of the NGWFs a value of 10 Bohr is chosen. Us-
ing these parameters the total energy is converged to
1 meV/atom at 10 Bohr NGWF radius compared to
14 Bohr, and to around 25 meV/atom at 750 eV cut-
off compared to 1250 eV. All NGWFs are initialised to
pseudoatomic orbitals [58] and then optimised in-situ in
terms of the underlying psinc basis. The density kernel
K↵� is not truncated in this work as all systems are small
enough that sparse matrix algebra is only a minor com-
ponent of the total computational effort. For the later
Density Functional Perturbation Theory calculations, we
utilise the CASTEP plane-wave DFT code [59] with the
same pseudopotentials and cutoff energy. The DFPT cal-
culations are performed with 12 k-points, corresponding
to a maximum k-point spacing of 0.05 1/Å.

The S-phase molecular crystal structure considered
here has two molecules per primitive cell and triclinic
(P � 1) space group symmetry. The lattice parameters
are given by a = 7.90 Å, b = 6.06 Å, c = 16.01 Å,
and ↵ = 101.9�, � = 112.6�, � = 85.8� [60]. Optimised
molecular geometries are taken from Ref. [23] in order
to facilitate comparison of our calculations with Ref. [47]
where high-level CASPT2/CASSCF and GW/BSE cal-
culations were performed using the same geometries.

For calculations on isolated dimers and clusters we
employ open boundary conditions. This is achieved by
putting the dimers in a large simulation box and truncat-
ing the Coulomb interaction at large distances to elim-
inate electrostatic interactions between periodic images
[61]. The calculations on supercells of the pentacene crys-
tal use periodic boundary conditions.

III. DIMER & CLUSTER CALCULATIONS

The molecular geometries of the ‘herringbone’ dimer
and the ‘parallel’ dimer are shown in Fig. 3. The her-
ringbone dimer represents the unit cell of the pentacene
crystal. While the long axes of the molecules are mostly
aligned, there is a rotational offset around the same long
axis between the units. In particular, this means that
the two units in the herringbone dimer are not related
by symmetry.

In the parallel dimer, on the other hand, the pentacene
molecules belong to the same sublattice of the crystal
and are related by a translation along lattice vector b
(cf. Fig. 1). As a result the molecular planes of the
molecules are parallel. The translational correspondence
together with the inversion symmetry of single pentacene
molecules mean that the parallel dimer has an inversion
centre, i.e. the units are symmetry-equivalent.

Configuration our method CASPT2/CASSCF GW/BSE
Herringbone 1 2.04 2.22 [47] 1.92 [47]
Herringbone 2 2.72 2.55 [47] 2.60 [47]

Parallel 2.61 3.03 [47] 2.45* [47]

Table I. CT energies (eV) of isolated dimers, comparing our
results with higher-level theory. The authors of Ref. [47] iden-
tify the excitation marked by an asterisk as a third locally
excited state dominated by transitions between the frontier
orbitals of the monomers. However, in a dimer there can only
be two states of this kind. Hence, we concluded that the
excitation does in fact have CT character.

Figure 3. Dimer geometries and CT excitation energies from
cDFT (quoted in eV). The significant energy gap between the
two CT states in the herringbone dimer can be rationalised
by considering the different charge distributions of electron
and hole, and the geometry. The hole orbital corresponds
to the pentacene HOMO which has a node on the long axis
of the molecule. The electron orbital (LUMO), on the other
hand, does not feature such a node. The partial alignment of
the upper molecule with the dipole vector means that the bi-
modal charge distribution on the upper molecule has a lower
Coulomb energy in configuration 1 as compared to configura-
tion 2. In the parallel case the two CT states are related by
inversion symmetry and the energies are degenerate.

First, we obtain CT energies for the dimers in isola-
tion. The results are summarised in Fig. 3. The most
striking aspect is the significant energy gap between the
two CT configurations in the herringbone dimer due to
their symmetry-inequivalence, as elaborated in the fig-
ure. In the parallel configuration the energies are degen-
erate due to inversion symmetry. The excitation energies
for the herringbone configuration are within ⇠0.2 eV of
literature values obtained with higher-level methods (cf.
Table I). For the parallel configuration the discrepancy
may be as large as ⇠0.4 eV, depending on the method
compared to.

We next perform cluster calculations where we sur-
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system (cf. Fig. 2a). These potentials are optimised in-
situ, via a further conjugate gradients algorithm nested
between kernel optimisation and NGWF optimisation,
and iterated until the population targets NI for the cho-
sen sites are met. In the case of intermolecular CT states,
these targets are, respectively, one fewer charge on the
donor molecule and one additional charge on the accep-
tor, relative to the ground state.

Within the LS-DFT framework it is a natural choice
to employ the aforementioned localised NGWFs to define
site projectors [51]. In this work we employ a fixed set of
NGWFs from a ground-state calculation for this purpose:

P̂I =
X

↵2I

|�↵
i h�↵| , (3)

where the sum ↵ 2 I refers to NGWFs centered on atoms
belonging to site I. Here, subscript indices are used to
describe the standard covariant functions |�↵i, while su-
perscript indices refer to their contravariant duals |�↵

i,
which obey h�↵|��

i = �↵� . See Ref. [52, 53] for further
discussion on this topic. A complication in the definition
of site projection operators arises from the fact that the
NGWFs are not orthonormal (this is true even of atomic
orbitals, in the case of sites comprising more than one
atom), meaning that the duals �↵ are not the same as
the NGWFs. Instead, they are defined via the inverse of
the NGWF overlap matrix S↵� = h�↵|��i:

|�↵
i =

X

�

|��i
�
S�1

��↵
. (4)

Given that the overlap and inverse overlap matrices can
both be made sparse by appropriately-chosen truncation,
it is possible to construct the inverse in linear-scaling
computational effort using a sparse matrix implemen-
tation of Hotelling’s algorithm [54]. Duals constructed
using the NGWF overlap matrix for the complete sys-
tem are delocalised over that system, and thus present a
highly undesirable choice for use in cDFT since this im-
plies that constraining potentials VI act non-locally on
the charge density, with donor and acceptor subspaces
overlapping. Appropriate localisation of the duals, to
the region of the system of interest for defining a site, is
achieved by by suitably truncating the NGWF overlap
matrix before its inversion, and then defining subspace
duals for the purposes of building the site projection op-
erators via the resulting subspace inverse overlap matrix
O↵� instead of the full S↵� , as described in [55]. Specif-
ically, a ‘site-block’ scheme is imposed on the sparsity of
the NGWF overlap matrix before it is inverted. Here, a
block is defined by all NGWFs associated with a given
site. Overlap matrix elements between NGWFs associ-
ated with different sites are set to zero (cf. Fig. 2b). Once
this matrix has been inverted, it retains the same block
pattern of sparsity, meaning that subspace duals are de-
fined as a linear combination of only those NGWFs on
the same constraint site.

When the sites are defined in self-contained manner,
thereby, bi-orthogonality is unavoidably lost between

Figure 2. a) Schematic of the cDFT scheme used in this work:
A nonlocal constraining potential (illustrated by 2D poten-
tial energy surface) constructed from atom-centred functions
is applied to the single-electron density matrix. This causes
charge to redistribute to obey chosen population constraints,
and allows the description of CT excitations within the frame-
work of standard DFT. b) Block scheme of truncated NGWF
overlap matrix to ensure site-localisation of contravariant du-
als. Blue and red denote the constrained sites, gray the re-
maining system.

NGWFs and duals localised to different sites, in the event
that these sites overlap to some degree. This carries the
disadvantage the sum of charges over a set of such sites,
covering the system, may not equal the true total charge.
For well-separated donor and acceptor regions such as in
the system at hand, any overestimation of site charge due
to the latter effect is insubstantial in comparison to the
dramatic overestimation incurred by using delocalised
duals. On the other hand, even when the donor and ac-
ceptor regions do overlap substantially, unlike methods
employing fully delocalized duals our approach ensures
that the constraining potentials remain fully localised to
their respective regions, with a smooth, non-oscillatory
transition at the boundary.

A different approach to cDFT in the context of linear-
scaling has been described in Refs. [56, 57].

In order to obtain energies of CT excitations, we first
perform a ground state DFT calculation. This yields
both a total energy for the ground state and a set of
converged ground-state NGWFs which are subsequently
used as cDFT projectors. To define the population tar-
gets for the cDFT run we simply add ±1 to the ground
state populations of the appropriate sites (acceptor: +1;
donor: �1). The difference between the constrained total
energy and the ground state energy yields the (vertical)
CT excitation energy. Since we are interested in ultrafast
processes like singlet fission where nuclear relaxation in
the excited state is less significant, we restrict our atten-
tion to vertical excitation energies. In general, a geom-
etry optimisation in the excited state would be required
in order to correctly describe longer-lived CT states.

– J.-Z. Wang, et al, Surface 
Science 579, 80 (2005).
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Figure 1. The pentacene (C22H14) single molecule and
molecular crystal (S-phase [23]). The unit cell contains two
molecules. The third lattice vector c points out of the page.

hybridisation effects encountered in realistic systems. A
solution to this problem, such as that which we presently
propose, is then readily transferable to a range of complex
systems of technological interest, not only in the context
of photovoltaics, but also organic electronics [42–44] and
spintronics [45].

We first calculate CT energies for the dimers in iso-
lation, and we subsequently include screening effects by
embedding such dimers in a small cluster of neighbours,
and in supercells of the crystal. Supercell calculations
allow us to approach the infinite limit using a correction
scheme that eliminates the spurious dipole-dipole interac-
tions between periodic images of the simulation cell. The
only inputs required for this correction are the intrinsic
dipole of the CT configuration and the dielectric tensor
of the crystal. The latter is obtained from a density func-
tional perturbation theory (DFPT) calculation [46]. We
find that a single parameter, fit to the results of a series
of calculations on different supercells, is sufficient to cor-
rect for the overestimation of electrostatic screening as a
result of the aforementioned band-gap problem of DFT.
The isolated calculations facilitate a comparison of the
cDFT method with higher-level theory results from the
literature [47]. In addition comparison between clusters
and the infinite limit enables us to directly confirm the
validity of the cluster approximation.

II. METHODS

A. The ground state: linear-scaling DFT

In order to carry out ground and excited state calcu-
lations on large clusters and supercells, we use linear-
scaling DFT as implemented in the ONETEP code [28].
This LS-DFT methodology is based on the single-electron
density matrix ⇢(r, r0) rather than Kohn-Sham orbitals
 i(r). The density matrix is expanded in a basis of

localised, atom-centred functions �↵(r) called NGWFs
(non-orthogonal generalised Wannier functions) [48]:

⇢(r, r0) =
X

i

 i(r)fi i(r
0) =

X

↵�

�↵(r)K
↵���(r

0), (1)

where K↵� is called the density kernel. The NGWFs
are strictly truncated at a chosen localisation radius,
which is a convergence parameter. The computational ef-
fort of traditional DFT methods, based on manipulation
of Kohn-Sham eigenstates, inevitably scales as O(N3),
where N denotes the number of electrons. This is because
there are O(N) eigenstates represented via O(N) basis
functions, which have to be kept mutually orthogonal to
O(N) other eigenstates. By contrast, in a density ma-
trix representation, it is possible to achieve overall O(N)
scaling if the density kernel is truncated at some cutoff
radius such that it is a sparse matrix. This exploits the
‘near-sightedness’ of electronic structure in systems with
a gap [49]. Instead of imposing orthogonality explicitly
on Kohn-Sham states, it is necessary to constrain the
density matrix to be idempotent and have a trace equal
to the number of electrons N . In ONETEP, a nested loop
optimisation scheme, utilising a conjugate gradients algo-
rithm, is used to minimise the total energy with respect
to both K↵� (subject to the constraints of idempotency
and normalisation), and the set of NGWFs {�↵(r)}. This
approach has been shown to provide total energies and
forces in O(N) effort with systematically controllable ac-
curacy equivalent to that of a plane-wave basis [50]. This
is possible despite using a minimal number of NGWFs
(i.e., typically one per hydrogen atom, four per carbon
atom), since the NGWFs are optimised in an underlying
variational basis set of ‘psinc’ functions (delta functions
with limited spectral range), which are fully equivalent
to plane-waves.

B. Constrained DFT

In constrained DFT (cDFT) [24–26] the DFT total en-
ergy functional is augmented with terms that impose de-
sired constraints on the charge (and/or spin) density of a
system. While these constraints can take several forms,
in this work we impose them using monomer-localised
projection operators to partition the density. This gives
a total functional of the form:

W = EDFT +
X

sites I

VI

⇣
Tr[P̂I ⇢̂]�NI

⌘
. (2)

Here, the VI are Lagrange multipliers that enforce occu-
pancy targets NI on specific sites in the system, which
are defined via projectors P̂I . The sites in question may,
generally, be atoms, groups of atoms or entire molecules.
For example, if one aims to describe an intermolecular
CT state, each of the two molecules involved constitutes
a site. The Lagrange multipliers VI act as artificial con-
straining potentials that cause charge to move around the
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the medium. Now it turns out that in order to pre-
serve the structure of the Ewald formula it is necessary
to split the charge distribution anisotropically. This is
achieved by inserting the inverse dielectric tensor in the
exponential of the Gaussian smearing function, namely
exp(�⌘2|r|2) ! exp(�⌘2rt✏�1r)/

p
det ✏. Using this sub-

stitution the solution of the (real space) Poisson equation
for the smeared charge can be reduced to the isotropic
case by a change of variables. In the reciprocal space
term the denominator transforms in conjunction with the
Poisson equation as |k|2 ! kt✏k. In addition, the Fourier
transform of the modified Gaussian smearing function is
now given by exp(�kt✏k/4⌘2).

All in all, a structurally identical expression for the
dipole contribution is obtained, the only difference being
an overall factor of 1/

p
det ✏ and linear transformations

of the direct and reciprocal vectors:

P ! D�1CtP, (11)

l ! D�1Ctl, (12)

k ! DCtk. (13)

Here C is the (orthogonal) principal axis transformation
that diagonalises ✏, and D = diag(p✏1,

p
✏2,

p
✏3) with

the eigenvalues ✏i of ✏, i.e. ✏ = CD2Ct [69]. We note that
transforming the lattice vectors in this way necessarily
entails a rescaling of the cell volume, namely Vcell !

Vcell/
p
det ✏.

Applying the correction

First, we perform a DFPT calculation using the
CASTEP code to obtain the dielectric tensor for the
primitive cell of the pentacene crystal:

✏DFPT =

2

64
3.48 �0.18 �0.12

�0.18 3.14 0.19

�0.12 0.19 5.61

3

75 .

The actual dielectric tensor is assumed to be obtained
by a uniform scaling ✏ = c · ✏DFPT. The scaling accounts
for the overestimation of screening due to the band-gap
error, as previously discussed. By using a single scal-
ing parameter c we employ the simplifying assumption
that the overscreening of DFPT is isotropic. The dipole
moments were taken from dimer cDFT calculations in
vacuum (atomic units):

Pher1 = (1.45, �6.70, �2.07)t, |Pher1| = 7.16

Pher2 = (�1.19, 7.58, 2.33)t, |Pher2| = 8.02

Ppar1/2 = ±(�7.89, 4.23, 1.85)t,
��Ppar1/2

�� = 9.14

The dipole correction is applied to the supercell energies
as follows:

Etot = EcDFT � Edip. (14)
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Figure 4. (Top) Herringbone 1 (Centre) Herringbone 2 (Bot-
tom) Parallel. Uncorrected energies (blue) and dipole correc-
tions (red) for CT states across a range of supercell embed-
dings. Dashed lines indicate corrected mean energies. Note
that the dipole correction is negative for the 531 supercell for
both herringbone configurations.

Minimising the combined standard deviation across all
three dimer configurations yields a best-fit value c =
0.378. The effect of the correction using this value of c for
the three cases is shown graphically in Fig. 4. We note
that the value of c is in approximate agreement with the
ratio of the DFT gap of ⇠ 0.8 eV and to the quasiparticle
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tom) Parallel. Uncorrected energies (blue) and dipole correc-
tions (red) for CT states across a range of supercell embed-
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that the dipole correction is negative for the 531 supercell for
both herringbone configurations.

Minimising the combined standard deviation across all
three dimer configurations yields a best-fit value c =
0.378. The effect of the correction using this value of c for
the three cases is shown graphically in Fig. 4. We note
that the value of c is in approximate agreement with the
ratio of the DFT gap of ⇠ 0.8 eV and to the quasiparticle
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system (cf. Fig. 2a). These potentials are optimised in-
situ, via a further conjugate gradients algorithm nested
between kernel optimisation and NGWF optimisation,
and iterated until the population targets NI for the cho-
sen sites are met. In the case of intermolecular CT states,
these targets are, respectively, one fewer charge on the
donor molecule and one additional charge on the accep-
tor, relative to the ground state.

Within the LS-DFT framework it is a natural choice
to employ the aforementioned localised NGWFs to define
site projectors [51]. In this work we employ a fixed set of
NGWFs from a ground-state calculation for this purpose:

P̂I =
X

↵2I

|�↵
i h�↵| , (3)

where the sum ↵ 2 I refers to NGWFs centered on atoms
belonging to site I. Here, subscript indices are used to
describe the standard covariant functions |�↵i, while su-
perscript indices refer to their contravariant duals |�↵

i,
which obey h�↵|��

i = �↵� . See Ref. [52, 53] for further
discussion on this topic. A complication in the definition
of site projection operators arises from the fact that the
NGWFs are not orthonormal (this is true even of atomic
orbitals, in the case of sites comprising more than one
atom), meaning that the duals �↵ are not the same as
the NGWFs. Instead, they are defined via the inverse of
the NGWF overlap matrix S↵� = h�↵|��i:

|�↵
i =

X

�

|��i
�
S�1

��↵
. (4)

Given that the overlap and inverse overlap matrices can
both be made sparse by appropriately-chosen truncation,
it is possible to construct the inverse in linear-scaling
computational effort using a sparse matrix implemen-
tation of Hotelling’s algorithm [54]. Duals constructed
using the NGWF overlap matrix for the complete sys-
tem are delocalised over that system, and thus present a
highly undesirable choice for use in cDFT since this im-
plies that constraining potentials VI act non-locally on
the charge density, with donor and acceptor subspaces
overlapping. Appropriate localisation of the duals, to
the region of the system of interest for defining a site, is
achieved by by suitably truncating the NGWF overlap
matrix before its inversion, and then defining subspace
duals for the purposes of building the site projection op-
erators via the resulting subspace inverse overlap matrix
O↵� instead of the full S↵� , as described in [55]. Specif-
ically, a ‘site-block’ scheme is imposed on the sparsity of
the NGWF overlap matrix before it is inverted. Here, a
block is defined by all NGWFs associated with a given
site. Overlap matrix elements between NGWFs associ-
ated with different sites are set to zero (cf. Fig. 2b). Once
this matrix has been inverted, it retains the same block
pattern of sparsity, meaning that subspace duals are de-
fined as a linear combination of only those NGWFs on
the same constraint site.

When the sites are defined in self-contained manner,
thereby, bi-orthogonality is unavoidably lost between

Figure 2. a) Schematic of the cDFT scheme used in this work:
A nonlocal constraining potential (illustrated by 2D poten-
tial energy surface) constructed from atom-centred functions
is applied to the single-electron density matrix. This causes
charge to redistribute to obey chosen population constraints,
and allows the description of CT excitations within the frame-
work of standard DFT. b) Block scheme of truncated NGWF
overlap matrix to ensure site-localisation of contravariant du-
als. Blue and red denote the constrained sites, gray the re-
maining system.

NGWFs and duals localised to different sites, in the event
that these sites overlap to some degree. This carries the
disadvantage the sum of charges over a set of such sites,
covering the system, may not equal the true total charge.
For well-separated donor and acceptor regions such as in
the system at hand, any overestimation of site charge due
to the latter effect is insubstantial in comparison to the
dramatic overestimation incurred by using delocalised
duals. On the other hand, even when the donor and ac-
ceptor regions do overlap substantially, unlike methods
employing fully delocalized duals our approach ensures
that the constraining potentials remain fully localised to
their respective regions, with a smooth, non-oscillatory
transition at the boundary.

A different approach to cDFT in the context of linear-
scaling has been described in Refs. [56, 57].

In order to obtain energies of CT excitations, we first
perform a ground state DFT calculation. This yields
both a total energy for the ground state and a set of
converged ground-state NGWFs which are subsequently
used as cDFT projectors. To define the population tar-
gets for the cDFT run we simply add ±1 to the ground
state populations of the appropriate sites (acceptor: +1;
donor: �1). The difference between the constrained total
energy and the ground state energy yields the (vertical)
CT excitation energy. Since we are interested in ultrafast
processes like singlet fission where nuclear relaxation in
the excited state is less significant, we restrict our atten-
tion to vertical excitation energies. In general, a geom-
etry optimisation in the excited state would be required
in order to correctly describe longer-lived CT states.
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that these sites overlap to some degree. This carries the
disadvantage the sum of charges over a set of such sites,
covering the system, may not equal the true total charge.
For well-separated donor and acceptor regions such as in
the system at hand, any overestimation of site charge due
to the latter effect is insubstantial in comparison to the
dramatic overestimation incurred by using delocalised
duals. On the other hand, even when the donor and ac-
ceptor regions do overlap substantially, unlike methods
employing fully delocalized duals our approach ensures
that the constraining potentials remain fully localised to
their respective regions, with a smooth, non-oscillatory
transition at the boundary.

A different approach to cDFT in the context of linear-
scaling has been described in Refs. [56, 57].

In order to obtain energies of CT excitations, we first
perform a ground state DFT calculation. This yields
both a total energy for the ground state and a set of
converged ground-state NGWFs which are subsequently
used as cDFT projectors. To define the population tar-
gets for the cDFT run we simply add ±1 to the ground
state populations of the appropriate sites (acceptor: +1;
donor: �1). The difference between the constrained total
energy and the ground state energy yields the (vertical)
CT excitation energy. Since we are interested in ultrafast
processes like singlet fission where nuclear relaxation in
the excited state is less significant, we restrict our atten-
tion to vertical excitation energies. In general, a geom-
etry optimisation in the excited state would be required
in order to correctly describe longer-lived CT states.

– Orbital-based constrained DFT 
allows to measure DFT errors, 
selectively excite systems, and 
investigate transient states.

Illustrating cDFT: charge-transfer in pentacene



So, what are we doing in practice?

Uq(↑) < 0
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…(just) adding attractive/repulsive potentials to constrain subspace populations,
population differences, and/or magnetic moments (differences)
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What if the molecule is adsorbed..?
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A challenge for cDFT: the reorganization effect
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FIG. 4. Plot of hr|P̂|ri for the pentacene molecule adsorbed on
graphene in the neutral state. The top and the bottom pan-
els correspond respectively to the ‘Summed’ analysis, which
calculates population on individual atoms separately before
adding them up, and the ‘Unified’ analysis, which calculates
population of the entire subspace as a whole, respectively. In
the case of the Summed method, significant brightness in the
interstitial space between atoms indicates double-counting in
the region of orbital overlap. Clearly, this is not the case with
the Unified method.

Cuto↵ energy flake �0 �+ � �Vc

900 eV none 28.91 26.67 55.58 N.A.
900 eV smaller 22.53 20.08 42.61 52.24
900 eV larger 18.75 19.62 38.37 50.13
1500 eV none 29.41 26.42 55.83 N.A.
1500 eV smaller 21.09 20.25 41.34 35.22
1500 eV larger 19.65 23.20 42.85 35.48

TABLE II. reorganization energies (corresponding to local
minima in the geometry) of a pentacene molecule as a func-
tion of cuto↵-energy and size of graphene flake. �Vc denotes
the di↵erence in the cDFT lagrange multipliers correspond-
ing to the two di↵erent geometries. All energies are in meV.
The smaller and the larger flakes contain 358 and 474 atoms,
respectively.

lation as (N ⇥ 101/102). Fig 5 shows the plot of charge
density on the system after removal of an electron from
the molecule. As seen in the picture, a molecule with
a net positive charge induces a negative charge in the
region of the graphene flake immediately beneath the
molecule. This is the image charge.

We follow the steps outlined in the subsection IIC
to calculate the reorganization energy of the pentacene
molecule adsorbed on the graphene flake. The main prob-

FIG. 5. Plot of isovalues of the charge density after removal of
an electron from the molecule with cDFT. Blue and red colors
denote positive and negative charge densities respectively.

FIG. 6. Pentacene molecule with arrows showing directions of
in-plane displacement of the atoms. The arrow lengths denote
magnitudes of displacement in arbitrary unit. The top and
the bottom figures correspond to an isolated pentacene and
one on a graphene flake respectively.
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tions. For isolated systems it does so by constructing ar-
tificial periodic replicas of the simulation cell. This gives
rise to undesired interactions between the unit cells. In
order to correct this, we used the package’s implementa-
tion of the Martyna-Tuckerman scheme67 of replacing the
Coulomb interaction from the periodic images of the sim-
ulation cell with a minimum image convention technique.
This essentially adds a screening potential term to cancel
the Coulomb interactions from neighbouring cells68. We
used the Martyna-Tuckerman parameter of 7.0 a0 that is
recommended in Ref. 67.

Dispersion correction

Dispersion interactions, which are poorly accounted for
in semi-local XC-functionals such as PBE, are expected
to be dominant between the pentacene molecule and the
graphene flake. Hence we use an empirical correction
Edisp(rij) to the total energy, in the form of a damped
London term summing over all pairs of atoms (i, j) with
interatomic distance of rij , given by

Edisp(rij) = �
X

i>j

fdamp(rij)
C6,ij

r6
ij

, (18)

where the damping term is given by69

fdamp(rij) = (1� exp(�cdamp(rij/R0
ij)

7))4. (19)

The parameters we use have been generated and imple-
mented previously in the onetep code by fitting baed on
a set of 60 complexes with significant dispersion70.

III. RESULTS

A. Test of the Forces on isolated pentacene

In order to demonstrate the role and necessity of the
nonorothogonality Pulay force term term due to the
change in the overlap of the projectors spanning the sub-
space, that is the (1̂� P̂) factor in Eq. 13, we first present
some tests on a very simple system consisting of a single
isolated, positively charged pentacene molecule. For this
we run three independent geometry relaxations, namely

1. An unconstrained DFT geometry optimization,
starting from the relaxed ground-state geometry of
the neutral molecule.

2. A geometry optimization with the same initial
guess, while applying a fixed constraining potential
of strength Vc to the pre-defined pentacene space
and relaxing without the force correction for the
derivative of projector overlap, i.e., omitting the
last term on the right hand side of Eq. 11.

3. A repeat of the latter, but with the exact expression
of Pulay forces given by Eq. 11.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

D
is

pl
ac

em
en

t (
B

oh
r)

1 eV Constraining Potential 2.5 eV Constraining Potential

1e-02

1e-03

1e-04

1e-05

1e-06
∆

En
er

gy
/io

n 
(e

V
)

No Constraint (DFT)
Without Force Correction
With Force Correction

0 5 10 15 20
Iteration

0.01

0.1

1

Fo
rc

e 
(e

V
/B

oh
r)

0 5 10 15 20
Iteration

FIG. 2. The maximum displacement, change in energy per
atom and maximum force on any atom, plotted against the
iteration number in a geometry relaxation calculation. The
black, blue and red curves show the plots for a regular DFT
run, a constrained run with properly corrected forces and one
without the proper correction for forces, respectively. The
constrained calculations are separately performed with a con-
stant potential of Vc = 1 eV (left column) and Vc = 1.5 eV
(right column). Please see main text for details.

A uniform constraining potential on the full Kohn-
Sham space should in principle have no other e↵ect than
giving rise to a rigid shift of all the energy levels, and thus
have no e↵ect on geometry optimization. In this case, the
full set of valence NGWFs for the ground state of the neu-
tral pentacene molecule were used as projector orbitals.
As a result, we may expect some deviation from perfect
potential uniformity to arise in the constraining poten-
tial in the Kohn-Sham space of the charged molecule,
and even more so as its geometry evolves. Therefore, at
convergence we expect the behaviour of the third run to
be similar to that of the first run since they are both
subjected to the correct forces, and a similar (but not
identical) potential modulo a constant shift. However,
we can expect the behaviour of the second run, which
does not have the correct force, to di↵er more substan-
tially from those of the other two. In Fig. 2 we plot
the maximum displacement, the change in energy per
ion and the maximum force as a function of the iteration
for the aforementioned calculations performed with two
di↵erent Vc (1 eV and 2.5 eV). We are particularly inter-
ested in the behaviour of the maximum force since this is
a property of the current iteration and does not depend
explicitly on the results of the previous iteration. For the
1eV constraining potential, the three calculations di↵er
only slightly since the correction term in the expression
for the force is small. However, for Vc = 2.5 eV, espe-
cially for the maximum force, we see that the behaviour
of the calculation with the incorrect force (red line) di↵ers
significantly from the other two, which are more similar.
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FIG. 4. Plot of hr|P̂|ri for the pentacene molecule adsorbed on
graphene in the neutral state. The top and the bottom pan-
els correspond respectively to the ‘Summed’ analysis, which
calculates population on individual atoms separately before
adding them up, and the ‘Unified’ analysis, which calculates
population of the entire subspace as a whole, respectively. In
the case of the Summed method, significant brightness in the
interstitial space between atoms indicates double-counting in
the region of orbital overlap. Clearly, this is not the case with
the Unified method.

Cuto↵ energy flake �0 �+ � �Vc

900 eV none 28.91 26.67 55.58 N.A.
900 eV smaller 22.53 20.08 42.61 52.24
900 eV larger 18.75 19.62 38.37 50.13
1500 eV none 29.41 26.42 55.83 N.A.
1500 eV smaller 21.09 20.25 41.34 35.22
1500 eV larger 19.65 23.20 42.85 35.48

TABLE II. reorganization energies (corresponding to local
minima in the geometry) of a pentacene molecule as a func-
tion of cuto↵-energy and size of graphene flake. �Vc denotes
the di↵erence in the cDFT lagrange multipliers correspond-
ing to the two di↵erent geometries. All energies are in meV.
The smaller and the larger flakes contain 358 and 474 atoms,
respectively.

lation as (N ⇥ 101/102). Fig 5 shows the plot of charge
density on the system after removal of an electron from
the molecule. As seen in the picture, a molecule with
a net positive charge induces a negative charge in the
region of the graphene flake immediately beneath the
molecule. This is the image charge.

We follow the steps outlined in the subsection IIC
to calculate the reorganization energy of the pentacene
molecule adsorbed on the graphene flake. The main prob-

FIG. 5. Plot of isovalues of the charge density after removal of
an electron from the molecule with cDFT. Blue and red colors
denote positive and negative charge densities respectively.

FIG. 6. Pentacene molecule with arrows showing directions of
in-plane displacement of the atoms. The arrow lengths denote
magnitudes of displacement in arbitrary unit. The top and
the bottom figures correspond to an isolated pentacene and
one on a graphene flake respectively.

Results for adsorbed pentacene

Cuto↵ energy flake �0 �+ � �Vc

900 eV none 29 27 56 N.A.

900 eV smaller 23 26 49 44

900 eV larger 20 20 39 50

1500 eV none 29 27 56 N.A.

1500 eV smaller 25 25 51 45

1500 eV larger 17 23 40 33

Re-organization energy higher for isolated pentacene: Steric e↵ect

Multiple local minima in geometry

Subhayan Roychoudhury Pulay Forces with Constrained DFT

Pulay force due to variable nonorthogonality

– Reorganization energy (meV)
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FIG. 1. (Color online) Scaling of the energy minimization
algorithm for NiO nanoclusters of increasing size. Timings
are for three density kernel optimization steps and one orbital
optimization step, comparing DFT and DFT+U calculations.
Simulations were performed on 300 Intel Westmere 2.67 Ghz
cores connected using quad data rate Infiniband.

reproduce the correct insulating gap and local magnetic
moments (of between 1.64 µB and 1.9 µB

28) due to a
poor description of 3d orbital localization. The gap, of
approximately 4 eV, is of predominantly Mott-Hubbard
type since it persists above the Néel temperature46, al-
beit with a significant charge-transfer component47. It
is thus successfully recovered by a number of methods,
which either include many-body Coulomb correlation ef-
fects explicitly, such as LDA+DMFT48, or introduce an
appropriate derivative discontinuity with respect to oc-
cupancy at the single-particle level, examples including
unrestricted Hartree-Fock46 and the self-interaction cor-
rected local density approximation49. The correct de-
scription of the physics of NiO was an early success for
DFT+U , the method of interest here, and this has been
repeated using numerous functional forms11,28,30,50–52.

The method described in this article has previously
been successfully applied to bulk NiO23. For a demon-
stration of computational scaling, we have chosen spheri-
cal nano-clusters of NiO with even numbers of nickel ions,
so that an open-shell singlet multiplicity, analogous to the
bulk antiferromagnetic ground state, could be tentatively
assumed. We may expect that a transition to a ferrimag-
netic or ferromagnetic state occurs below some critical
cluster size, as it has been predicted for very small iron
oxide clusters of interest for data-storage technology53,54.

Run-time parameters included a 500 eV equivalent
plane-wave cutoff energy, a spin polarized density ker-
nel cutoff at 25 a0, the LSDA exchange-correlation func-
tional16, nine local orbitals (NGWFs) for each nickel ion
and four each for oxygen, all with 7.5 a0 cutoff radii,
and norm-conserving pseudopotentials55. Atomic Hub-
bard projectors of hydrogenic form were used. Since cal-
culations on nano-clusters of varying sizes are expected to
exhibit differing convergence behavior, the energy min-
imization algorithm was simply run for a fixed number
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FIG. 2. (Color online) Computational time spent in subrou-
tines associated with the DFT+U functionality in the tests
shown in Fig. 1. Specifically timings shown are for comput-
ing the DFT+U energy of Eqn. 4, the Hamiltonian matrix of
Eqn. 21 in its Hubbard projector and local orbital represen-
tations, and the ionic forces given by Eqn. C6.

of iterations. One orbital optimization step and three
density kernel steps, with three penalty-functional idem-
potency corrections iterations at each of the latter, were
allowed. Orbital overlap matrix inversion was carried out
using a sparse matrix implementation of Hotelling’s al-
gorithm56 and a cubic supercell of length three times the
diameter of each nano-cluster was used, up to a maxi-
mum supercell length of approximately 300 a0.

A. Scaling of computational effort for DFT+U

Algorithmic timing data for ONETEP energy mini-
mization of NiO nano-clusters, containing up to 7, 153
atoms across 300 Intel Westmere 2.67 Ghz cores, is shown
in Fig. 1. A reasonable linear fit was obtained for the
timing; with a slightly negative fitted time intercept at
450− 500 atoms indicating a very efficient initialization
of the pre-requisite data in these calculations. The NiO
nano-clusters in question do not represent a favorable
case for the DFT+U method, since approximately half
of the ions host correlated subspaces. Nonetheless, we ob-
served a very small increase in computational time when
the DFT+U functionality was invoked, at approximately
5− 6%, and preservation of linear-scaling performance.

Timings for generating the DFT+U Hamiltonian and
its contribution to the total-energy and forces, for those
calculations which fell within memory resources, are de-
picted in Fig. 2. This indicates that no direct DFT+U
functionality appreciably deviates from linear-scaling be-
havior. We note, in particular, that the total time spent
in these DFT+U specific subroutines makes up only a
small fraction of the increase in cost incurred by DFT+U ,
at less than 1% of the total computational time.

In order to understand where the dominant contribu-
tion to the DFT+U cost originates, since it is not di-

– Cite ONETEP DFT+U with: PRB 85, 085107 (2012) & PRB 83, 245124 (2011). 

– Cite computed U or J in ONETEP with: Phys. Rev. B 98, 235157 (2018). 

– To see a cool recent application: J. Phys. Chem. C 126 (43), 18439 (2022).



Thank you for listening
Chat here or contact for any DFT+U, cDFT, or oxide physics support at: 

• David.O.Regan@tcd.ie 

• @OReganGroupTCD 

• www.theoryofmaterials.com


