EMFT in ONETEP

Time-dependent EMFT in ONETEP

Quantum embedding in ONETEP

Joseph C. A. Prentice

Department of Materials, University of Oxford

ONETEP Masterclass 23rd August 2023

EMFT in ONETEP

Time-dependent EMFT in ONETEP

- Want to predict properties of systems with many atoms energy, band gap, optical absorption, etc.
- Let's use ONETEP to do this with DFT: what functional options do we have?

- Want to predict properties of systems with many atoms energy, band gap, optical absorption, etc.
- Let's use ONETEP to do this with DFT: what functional options do we have?
- Semi-local (LDA, PBE, ...)
 - Cheap
 - Can be inaccurate, e.g. underestimation of band gap, over-delocalisation

- Want to predict properties of systems with many atoms energy, band gap, optical absorption, etc.
- Let's use ONETEP to do this with DFT: what functional options do we have?
- Semi-local (LDA, PBE, ...)
 - Cheap
 - Can be inaccurate, e.g. underestimation of band gap, over-delocalisation
- Hybrid (B3LYP, PBE0, ...)
 - Include exact exchange contribution more expensive
 - In theory, more accurate (although still not perfect!)

- Want to predict properties of systems with many atoms energy, band gap, optical absorption, etc.
- Let's use ONETEP to do this with DFT: what functional options do we have?
- Semi-local (LDA, PBE, ...)
 - Cheap
 - Can be inaccurate, e.g. underestimation of band gap, over-delocalisation
- Hybrid (B3LYP, PBE0, ...)
 - Include exact exchange contribution more expensive
 - In theory, more accurate (although still not perfect!)
- Meta-GGAs (rSCAN, ...) somewhere between above choices, but less developed

- Problem: What if we need a certain level of theory to get accurate results, but applying that theory to the whole system is too computationally costly?
 - For example, hybrid DFT for quantitatively correct band gaps for several thousand atoms?

- Problem: What if we need a certain level of theory to get accurate results, but applying that theory to the whole system is too computationally costly?
 - For example, hybrid DFT for quantitatively correct band gaps for several thousand atoms?
- Solution: If interesting physics/chemistry is localised on an 'active region', but is influenced by the environment, we can use embedding:
 - Treat environment at a low level of theory, and active region at a high level, within a single calculation
 - Reduces cost for minimal reduction in accuracy
 - Self-consistent

EMFT in ONETEP

Time-dependent EMFT in ONETEP

Schematic embedding system

Joseph C. A. Prentice

Quantum embedding in ONETEP

 Classic example is QM/MM – environment described classically

- Classic example is QM/MM environment described classically
- But quantum effects often important need to describe environment quantum mechanically
- ... quantum embedding schemes

- Classic example is QM/MM environment described classically
- But quantum effects often important need to describe environment quantum mechanically
- ... quantum embedding schemes
- Extend the size of system accessible quantum mechanically whilst maintaining accuracy
- Quantum embedding combined with linear-scaling DFT would allow very large systems to be studied very accurately

Embedded mean-field theory

Scheme used here is embedded mean-field theory (EMFT)¹

- Partition basis functions (NGWFs) into active region (A) and environment (B)
- Similarly block partition density kernel K

$$\{\phi\}=\{\phi^{\mathsf{A}},\phi^{\mathsf{B}}\}$$

$$K = egin{pmatrix} K_{\mathsf{A}\mathsf{A}} & K_{\mathsf{A}\mathsf{B}} \ K_{\mathsf{B}\mathsf{A}} & K_{\mathsf{B}\mathsf{B}} \end{pmatrix}$$

¹J Chem Theory Comput: 11, 568 (2015)

Joseph C. A. Prentice

Quantum embedding in ONETEP

Embedded mean-field theory

Scheme used here is embedded mean-field theory (EMFT)¹

- Partition basis functions (NGWFs) into active region (A) and environment (B)
- Similarly block partition density kernel K
- Write total energy as sum of one- and two-electron parts
- Assume levels of theory are only different in E_{2-el}

$$\begin{split} E\left[K, \{\phi\}\right] &= E_{1\text{-el}}\left[K, \{\phi\}\right] \\ &+ E_{2\text{-el}}\left[K, \{\phi\}\right] \end{split}$$

¹J Chem Theory Comput: 11, 568 (2015)

Joseph C. A. Prentice

Quantum embedding in ONETEP

Embedded mean-field theory

Scheme used here is embedded mean-field theory (EMFT)¹

- Partition basis functions (NGWFs) into active region (A) and environment (B)
- Similarly block partition density kernel K
- Write total energy as sum of one- and two-electron parts
- Assume levels of theory are only different in E_{2-el}
- EMFT total energy is then given as shown

¹J Chem Theory Comput: 11, 568 (2015)

Joseph C. A. Prentice

$$\begin{split} & \boldsymbol{E}^{\mathsf{EMFT}}\left[\boldsymbol{K}, \{\phi\}\right] = \\ & \boldsymbol{E}_{1\text{-el}}\left[\boldsymbol{K}, \{\phi\}\right] + \boldsymbol{E}_{2\text{-el}}^{\mathsf{low}}\left[\boldsymbol{K}, \{\phi\}\right] + \\ & \left(\boldsymbol{E}_{2\text{-el}}^{\mathsf{high}}\left[\boldsymbol{K}_{\mathsf{AA}}, \{\phi^{\mathsf{A}}\}\right] - \boldsymbol{E}_{2\text{-el}}^{\mathsf{low}}\left[\boldsymbol{K}_{\mathsf{AA}}, \{\phi^{\mathsf{A}}\}\right]\right) \end{split}$$

Advantages

- In principle, very simple and very general
- Partitions naturally along atomic basis functions
- No need for a priori information: bonding, charges of subregions
- No chemical termination of subregions required
- Interaction and entanglement between regions naturally included
- Previous successes²
- Easy to extend to obtain response theories, e.g. TDDFT³
 - ²J Chem Theory Comput: 11, 568 (2015); 12, 5811 (2016); 13, 4216 (2017) ³J Chem Theory Comput 13, 4216 (2017)

Joseph C. A. Prentice

Quantum embedding in ONETEP

Block orthogonalisation

- ▶ Normalisation is maintained as long as $Tr[KS] = N_e$
- However, upon partitioning, charge spillover can occur
- Diagonal terms in this trace become unphysically large, being balanced by large negative values for off-diagonal terms
- This can be avoided by block orthogonalisation forcing the environment orbitals to be orthogonal to the active region's

EMFT in ONETEP

Time-dependent EMFT in ONETEP

ONETEP implementation

- ONETEP is a DFT code hence only DFT-in-DFT embedding
- Intended mode of use is hybrid-in-semi-local (e.g. B3LYP-in-PBE)
- Previous EMFT implementations used Gaussian basis sets unoptimised
- Block orthogonalisation interferes with NGWF optimisation
- Instead, can converge NGWFs at lower level of theory, and optimise only kernel with EMFT

Ĺ

ŕ

Theory

- We partition the Hamiltonian, using different levels of theory for different blocks
- Total energy is obtained by minimising Tr [KH^{EMFT}]

$$H^{\text{EMFT}} = \begin{pmatrix} H^{\text{high}}_{\text{AA}} & H^{\text{low}}_{\text{AB}} \\ H^{\text{low}}_{\text{BA}} & H^{\text{low}}_{\text{BB}} \end{pmatrix}$$
$$\dot{Y}^{\text{high}} = \hat{T} + \hat{V}_{\text{local}} + \hat{V}_{\text{Hartree}} + \hat{V}^{\text{high}}_{\text{XC}}$$
$$\dot{Y}^{\text{low}} = \hat{T} + \hat{V}_{\text{local}} + \hat{V}_{\text{Hartree}} + \hat{V}^{\text{low}}_{\text{XC}}$$

Theory

- V^{low}_{XC} is calculated from the total electron density (i.e. the full system NGWFs and kernel)
- V_{XC}^{low,A} and V_{XC}^{high,A} is calculated from the active region density (i.e. K_{AA} and the active region NGWFs), using the appropriate levels of theory

Finally,
$$V_{\text{XC}}^{\text{high}} = V_{\text{XC}}^{\text{low}} + \left(V_{\text{XC}}^{\text{high,A}} - V_{\text{XC}}^{\text{low,A}}\right)$$

Exact exchange with EMFT

- Exact exchange isn't calculated from partitioned electronic density, so how do we include it?
 - EX0: Only exchange within the active region is included
 - EX1: Inter-region exchange is symmetrically averaged
 - EX2: Full exchange interaction between regions
- EX0 comparable in accuracy or better than others, at a much lower cost – this is what is implemented
- This means calculating inter-region exact exchange is not implemented – hybrid-in-hybrid calculations will give a different result to a single-region calculation

EMFT in ONETEP

Time-dependent EMFT in ONETEP

Results

Example input file

```
%block species
HH119.0
CC649.0
H1 H 1 1 9.0
C1 C 6 4 9.0
%endblock species
%block species_ngwf_regions
C1 H1
СН
%endblock species_ngwf_regions
%block species_swri-for_hfx
C1
H1
%endblock species_swri-for_hfx
```

Example input file

```
task : singlepoint
cutoff_energy : 750 eV
xc_functional : PBE
active_xc_functional : B3LYP
use_emft : T
use_emft_follow : T
use_emft_lnv_only : T
block_orthogonalise : T
parallel_scheme : HOUSE
active_region : 1
```

EMFT in ONETEP

Time-dependent EMFT in ONETEP

TD-EMFT in ONETEP

- As noted before, linear-response theories are easy to add onto EMFT framework
- For LR-TDDFT, need second derivative of E_{xc}

TD-EMFT in ONETEP

- As noted before, linear-response theories are easy to add onto EMFT framework
- ▶ For LR-TDDFT, need second derivative of E_{xc}

Easy to calculate using EMFT:

$$f_{xc}(\mathbf{r},\mathbf{r}') = \frac{\delta^2 E_{xc}^{\text{low}}[\rho]}{\delta \rho(\mathbf{r}) \delta \rho(\mathbf{r}')} + \frac{\delta^2 E_{xc}^{\text{high}}[\rho_{AA}]}{\delta \rho_{AA}(\mathbf{r}) \delta \rho_{AA}(\mathbf{r}')} - \frac{\delta^2 E_{xc}^{\text{low}}[\rho_{AA}]}{\delta \rho_{AA}(\mathbf{r}) \delta \rho_{AA}(\mathbf{r}')}$$

TD-EMFT in ONETEP

- As noted before, linear-response theories are easy to add onto EMFT framework
- ▶ For LR-TDDFT, need second derivative of E_{xc}

Easy to calculate using EMFT:

$$f_{xc}(\mathbf{r},\mathbf{r}') = \frac{\delta^2 E_{xc}^{\text{low}}[\rho]}{\delta \rho(\mathbf{r}) \delta \rho(\mathbf{r}')} + \frac{\delta^2 E_{xc}^{\text{high}}[\rho_{AA}]}{\delta \rho_{AA}(\mathbf{r}) \delta \rho_{AA}(\mathbf{r}')} - \frac{\delta^2 E_{xc}^{\text{low}}[\rho_{AA}]}{\delta \rho_{AA}(\mathbf{r}) \delta \rho_{AA}(\mathbf{r}')}$$

- Input file same as normal (plus previously shown EMFT additions) – but advisable to restrict TDDFT kernel to active region (or smaller):
 - %block species_tddft_kernel C1 H1 %endblock species_tddft_kernel

EMFT in ONETEP

TD-EMFT results – phenolphthalein in water

EMFT in ONETEP

Time-dependent EMFT in ONETEP

TD-EMFT results – pentacene-doped *p*-terphenyl

			× × ×	
		$\Delta E_{S_0 ightarrow S_1}$ (eV)		
Configuration	PBE	B3LYP-in-PBE	Exp.	
Vacuum	1.880	2.198	2.31	
Cluster	1.792	2.069	2.00	
Crystal	1.810	2.089	2.09	

Exp data from Chem Phys Lett 250, 137 (1996) & JCP 109, 906 (1998)

Quantum embedding in ONETEP

Ground state EMFT: J C A Prentice, R J Charlton, A A Mostofi & P D Haynes, J Chem Theory Comput 16, 354 (2020)

TD-EMFT: J C A Prentice, J Chem Theory Comput 18, 1542 (2022)

Any questions?

Funded by:

Computational Electronic Structure of Condensed Matter

Engineering and Physical Sciences Research Council

Thank you for your attention!