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Why embedding?

I Want to predict properties of systems with many atoms –
energy, band gap, optical absorption, etc.

I Let’s use ONETEP to do this with DFT: what functional
options do we have?

I Semi-local (LDA, PBE, ...)

I Cheap
I Can be inaccurate, e.g. underestimation of band gap,

over-delocalisation

I Hybrid (B3LYP, PBE0, ...)

I Include exact exchange contribution – more expensive
I In theory, more accurate (although still not perfect!)

I Meta-GGAs (rSCAN, ...) – somewhere between above
choices, but less developed
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Why embedding?

I Problem: What if we need a certain level of theory to get
accurate results, but applying that theory to the whole system
is too computationally costly?
I For example, hybrid DFT for quantitatively correct band gaps

for several thousand atoms?

I Solution: If interesting physics/chemistry is localised on an
‘active region’, but is influenced by the environment, we can
use embedding:

I Treat environment at a low level of theory, and active region at
a high level, within a single calculation

I Reduces cost for minimal reduction in accuracy
I Self-consistent
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Schematic embedding system

Joseph C. A. Prentice

Quantum embedding in ONETEP



Quantum embedding EMFT in ONETEP Time-dependent EMFT in ONETEP

Quantum embedding

I Classic example is QM/MM – environment described
classically

I But quantum effects often important – need to describe
environment quantum mechanically

I ∴ quantum embedding schemes

I Extend the size of system accessible quantum mechanically
whilst maintaining accuracy

I Quantum embedding combined with linear-scaling DFT would
allow very large systems to be studied very accurately
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Embedded mean-field theory

Scheme used here is embedded mean-field theory (EMFT)1

I Partition basis functions
(NGWFs) into active region
(A) and environment (B)

I Similarly block partition
density kernel K

I Write total energy as sum of
one- and two-electron parts

I Assume levels of theory are
only different in E2-el

I EMFT total energy is then
given as shown

{φ} = {φA, φB}

K =

(
KAA KAB

KBA KBB

)

1J Chem Theory Comput: 11, 568 (2015)
Joseph C. A. Prentice
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I Similarly block partition
density kernel K

I Write total energy as sum of
one- and two-electron parts

I Assume levels of theory are
only different in E2-el

I EMFT total energy is then
given as shown

E [K , {φ}] = E1-el [K , {φ}]
+ E2-el [K , {φ}]

1J Chem Theory Comput: 11, 568 (2015)
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Embedded mean-field theory

Scheme used here is embedded mean-field theory (EMFT)1

I Partition basis functions
(NGWFs) into active region
(A) and environment (B)

I Similarly block partition
density kernel K

I Write total energy as sum of
one- and two-electron parts

I Assume levels of theory are
only different in E2-el

I EMFT total energy is then
given as shown

EEMFT [K , {φ}] =

E1-el [K , {φ}] + E low
2-el [K , {φ}] +(

Ehigh
2-el

[
KAA, {φA}

]
− E low

2-el

[
KAA, {φA}

])

1J Chem Theory Comput: 11, 568 (2015)
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Advantages

I In principle, very simple and very general

I Partitions naturally along atomic basis functions

I No need for a priori information: bonding, charges of
subregions

I No chemical termination of subregions required

I Interaction and entanglement between regions naturally
included

I Previous successes2

I Easy to extend to obtain response theories, e.g. TDDFT3

2J Chem Theory Comput: 11, 568 (2015); 12, 5811 (2016); 13, 4216 (2017)
3J Chem Theory Comput 13, 4216 (2017)
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Block orthogonalisation

I Normalisation is maintained as long as Tr[KS ] = Ne

I However, upon partitioning, charge spillover can occur

I Diagonal terms in this trace become unphysically large, being
balanced by large negative values for off-diagonal terms

I This can be avoided by block orthogonalisation – forcing the
environment orbitals to be orthogonal to the active region’s
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ONETEP implementation

I ONETEP is a DFT code – hence only DFT-in-DFT
embedding

I Intended mode of use is hybrid-in-semi-local (e.g.
B3LYP-in-PBE)

I Previous EMFT implementations used Gaussian basis sets –
unoptimised

I Block orthogonalisation interferes with NGWF optimisation

I Instead, can converge NGWFs at lower level of theory, and
optimise only kernel with EMFT
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Theory

I We partition the
Hamiltonian, using different
levels of theory for different
blocks

I Total energy is obtained by
minimising Tr

[
KHEMFT

]
HEMFT =

(
Hhigh
AA H low

AB

H low
BA H low

BB

)
Ĥhigh = T̂+V̂local+V̂Hartree+V̂ high

XC

Ĥ low = T̂ +V̂local+V̂Hartree+V̂ low
XC
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Theory

I V low
XC is calculated from the total electron density (i.e. the full

system NGWFs and kernel)

I V low,A
XC and V high,A

XC is calculated from the active region density
(i.e. KAA and the active region NGWFs), using the
appropriate levels of theory

I Finally, V high
XC = V low

XC +
(
V high,A
XC − V low,A

XC

)
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Exact exchange with EMFT

I Exact exchange isn’t calculated from partitioned electronic
density, so how do we include it?
I EX0: Only exchange within the active region is included
I EX1: Inter-region exchange is symmetrically averaged
I EX2: Full exchange interaction between regions

I EX0 comparable in accuracy or better than others, at a much
lower cost – this is what is implemented

I This means calculating inter-region exact exchange is not
implemented – hybrid-in-hybrid calculations will give a
different result to a single-region calculation

Joseph C. A. Prentice
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Results
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Example input file
%block species

H H 1 1 9.0

C C 6 4 9.0

H1 H 1 1 9.0

C1 C 6 4 9.0

%endblock species

%block species ngwf regions

C1 H1

C H

%endblock species ngwf regions

%block species swri-for hfx

C1

H1

%endblock species swri-for hfx

...
Joseph C. A. Prentice
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Example input file

task : singlepoint

cutoff energy : 750 eV

xc functional : PBE

active xc functional : B3LYP

use emft : T

use emft follow : T

use emft lnv only : T

block orthogonalise : T

parallel scheme : HOUSE

active region : 1

Joseph C. A. Prentice
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TD-EMFT in ONETEP

I As noted before, linear-response theories are easy to add onto
EMFT framework

I For LR-TDDFT, need second derivative of Exc

I Easy to calculate using EMFT:

I Input file same as normal (plus previously shown EMFT
additions) – but advisable to restrict TDDFT kernel to active
region (or smaller):

I %block species tddft kernel

C1 H1

%endblock species tddft kernel

Joseph C. A. Prentice
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δ2E low

xc [ρ]

δρ(r)δρ(r′)
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TD-EMFT results – phenolphthalein in water

(TD-)EMFT combined with implicit solvent = multi-level model!
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Experiment

Exp data from J Am Chem Soc 48, 1994 (1926)
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TD-EMFT results – pentacene-doped p-terphenyl

∆ES0→S1 (eV)

Configuration PBE B3LYP-in-PBE Exp.

Vacuum 1.880 2.198 2.31
Cluster 1.792 2.069

2.09
Crystal 1.810 2.089

Exp data from Chem Phys Lett 250, 137 (1996) & JCP 109, 906 (1998)
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Any questions?

Funded by:

Thank you for your attention!
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