

Electrified electrodeelectrolyte interfaces from first principles

Arihant Bhandari, Chao Peng, Jacek Dziedzic, Lucian Anton, John R. Owen, Denis Kramer, Chris-Kriton Skylaris

University of Southampton, United Kingdom

Model for simulations of electrified electrode-electrolyte interfaces in ONETEP

Electrochemistry from first-principles in the grand canonical ensemble

Cite as: J. Chem. Phys. **155**, 024114 (2021); https://doi.org/10.1063/5.0056514 Submitted: 11 May 2021 • Accepted: 22 June 2021 • Published Online: 12 July 2021

🔟 Arihant Bhandari, Chao Peng, 🔟 Jacek Dziedzic, et al.

Model for simulations of electrified solid-liquid interfaces in ONETEP

• Ensemble for electrons

Canonical	Grand canonical
Electronically isolated system.	System connected with an electronic reservoir.
Number of electrons and the charge is fixed.	Chemical potential of electrons is fixed.
Chemical potential is found.	Charge is found.

Model for simulations of electrified solid-liquid interfaces in ONETEP

• Electroneutrality $\nabla \cdot [\varepsilon(\mathbf{r})\nabla v(\mathbf{r})] = -4\pi [\rho(\mathbf{r}) + \rho_{mob}(\mathbf{r})]$

Jellium	Accessible Jellium	Grand canonical electrolyte	
Opposite background charge in the entire simulation cell.	Opposite background charge in the electrolyte accessible region.	Non-uniform background charge which follows Poisson-Boltzmann distribution and neutralizes the charge on atoms.	
$\rho_{\rm mob}(\boldsymbol{r}) \\ = -\frac{\int \rho(\boldsymbol{r}')d\boldsymbol{r}'}{\int d\boldsymbol{r}'}$	$\rho_{\text{mob}}(\boldsymbol{r}) = -\frac{\lambda(\boldsymbol{r}) \int \rho(\boldsymbol{r}') d\boldsymbol{r}'}{\int \lambda(\boldsymbol{r}') d\boldsymbol{r}'}$	$\rho_{\text{mob}}(\mathbf{r}) = \lambda(\mathbf{r}) \sum_{i} z_{i} c_{i}^{\infty} \exp\left(\frac{-z_{i}[\nu(\mathbf{r}) + \nu_{s}]}{k_{B}T}\right)$	
$\lambda(\mathbf{r}) = \prod_{I}^{N} \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{ \mathbf{r} - \mathbf{R}_{I} - R_{I}^{\lambda}}{\sigma}\right) \right] $ $ 1.0$ $ 0.6$ $ 0.2$ $ -0.2$ $ -0.6$ $ 1.0$			
THE FARA	DAY Universit	Electronic structure calculations in electrolyte solutions: Methods for neutralization of extended charged interfaces	eptember 2020

Model for simulations of electrified solid-liquid interfaces in ONETEP

• Solvent medium $\nabla \cdot [\varepsilon(\mathbf{r}) \nabla v(\mathbf{r})] = -4\pi [\rho(\mathbf{r}) + \rho_{mob}(\mathbf{r})]$

Vacuum	Solvent
Uniform permittivity of 1.0.	Permittivity varies smoothly from 1.0 near the atoms to that of the bulk solvent far away.
No interactions with the atoms.	Cavitation, dispersion and repulsion interaction proportional to the solvent accessible surface area.

System

Dielectric solvent and Quantum System Continuum electrolyte $\rho(\mathbf{r}) = \rho_{\rm e}(\mathbf{r}) + \rho_{\rm nuc}(\mathbf{r})$ $z_i, c_i(r), i = 1 ... p$ $\rho_e(\mathbf{r}) = \sum_k f_k \,\psi_k(\mathbf{r}) \psi_k^*(\mathbf{r})$ Electrostatic potential,v(r)

 $\Omega=\Omega_{\rm e}$

 $+ \Omega_{\rm mf}$

 $+ \Omega_{nmf}$

System

Quantum System

 $\rho(\mathbf{r}) = \rho_{\rm e}(\mathbf{r}) + \rho_{\rm nuc}(\mathbf{r})$

$$\rho_e(\boldsymbol{r}) = \sum_k f_k \psi_k(\boldsymbol{r}) \psi_k^*(\boldsymbol{r})$$

Electrostatic potential, v(r)

Dielectric solvent

and

Continuum electrolyte

 $z_i, c_i(r), i = 1 ... p$

$$\Omega = \sum_{k} f_{k} \int \psi_{k}^{*}(\boldsymbol{r}) \left(-\frac{1}{2} \nabla^{2}\right) \psi_{k}(\boldsymbol{r}) d\boldsymbol{r} \quad \text{Kinetic energy}$$

$$+k_{B}T \sum_{k} f_{k} \ln f_{k} + (1 - f_{k}) \ln f_{k} \quad \text{Entropy}$$

$$-\mu_{e} \sum_{k} f_{k} \quad \text{Chemical potential term}$$

$$+\sum_{k} f_{k} \int \psi_{k}^{*}(\boldsymbol{r}) v_{ps}(\boldsymbol{r}) \psi_{k}(\boldsymbol{r}) d\boldsymbol{r} \quad \text{Pseudopotential contribu}$$

$$+E_{xc} \quad \text{Exchange Correlation Entrop}$$

ential contribution Correlation Energy

7

System
Quantum System

$$p(\mathbf{r}) = \rho_{e}(\mathbf{r}) + \rho_{nuc}(\mathbf{r})$$

 $p_{e}(\mathbf{r}) = \sum_{k} f_{k} \psi_{k}(\mathbf{r})\psi_{k}^{*}(\mathbf{r})$
 $p_{e}(\mathbf{r}) = \sum_{k} f_{k} \psi_{k}(\mathbf{r})\psi_{k}^{*}(\mathbf{r})$
Electrostatic potential, $v(\mathbf{r})$
 $p_{e}(\mathbf{r}) = \sum_{k} f_{k} \psi_{k}(\mathbf{r})\psi_{k}^{*}(\mathbf{r})$
 $p_{e}(\mathbf{r}) = \sum_{k} f_{k} \psi_{k}(\mathbf{r})\psi_{k}^{*}(\mathbf{r})$
Electrostatic potential, $v(\mathbf{r})$
 $p_{e}(\mathbf{r}) = \sum_{k} f_{k} \psi_{k}(\mathbf{r})\psi_{k}^{*}(\mathbf{r})$
 $p_{e}(\mathbf{r}) = \sum_{k} f_{k} \psi_{k}(\mathbf{r})\psi_{k}^{*}(\mathbf{r})$
 $p_{e}(\mathbf{r}) = \sum_{k} f_{k} \psi_{k}(\mathbf{r})\psi_{k}(\mathbf{r})d\mathbf{r}$
Electrostatic potential, $v(\mathbf{r})$
 $p_{e}(\mathbf{r}) = \sum_{k} f_{k} \psi_{k}(\mathbf{r})\psi_{k}(\mathbf{r})d\mathbf{r}$
 $p_{e}(\mathbf{r}) = \sum_{k} f_{k} \psi_{k}(\mathbf{r})\psi_{k}(\mathbf{r})d\mathbf{r}$
Electrostatic potential, $v(\mathbf{r})$
 $p_{e}(\mathbf{r}) = \sum_{k} f_{k} \psi_{k}(\mathbf{r})\psi_{k}(\mathbf{r})d\mathbf{r}$
 $p_{e}(\mathbf{r}) = \sum_{k} f_{k} \psi_{k}(\mathbf{r})\psi_{k}(\mathbf{r})d\mathbf{r}$
Electrostatic potential, $v(\mathbf{r})$
 $p_{e}(\mathbf{r}) = \sum_{i=1}^{p} f_{i}(\mathbf{r})d\mathbf{r}$
Electrostatic energy
 $-k_{B}T\sum_{i=1}^{p} f_{i}(\mathbf{r})\ln\lambda(\mathbf{r})d\mathbf{r}$
Electrolyte osmotic pressure
 $-k_{B}T\sum_{i=1}^{p} f_{i}(\mathbf{r})\ln\lambda(\mathbf{r})d\mathbf{r}$
Electrolyte accessibility term
 $+k_{B}T\sum_{i=1}^{p} f_{i}(\mathbf{r})\ln\left(\frac{c_{i}(\mathbf{r})}{c^{0}}\right)d\mathbf{r}$
Electrolyte entropy
 $-\sum_{i=1}^{p} \mu_{i} \int c_{i}(\mathbf{r})d\mathbf{r}$
Electrolyte chemical potential

System

$$\Omega = \sum_{k} f_{k} \int \psi_{k}^{*}(\mathbf{r}) \left(-\frac{1}{2}\nabla^{2}\right) \psi_{k}(\mathbf{r}) d\mathbf{r} \text{ Kinetic energy} \qquad 9$$

$$= \sum_{k} f_{k} \int \psi_{k}^{*}(\mathbf{r}) \left(-\frac{1}{2}\nabla^{2}\right) \psi_{k}(\mathbf{r}) d\mathbf{r} \text{ Kinetic energy} \qquad 9$$

$$= \sum_{k} f_{k} \int \psi_{k}(\mathbf{r}) \psi_{k}(\mathbf{r}) \left(-\frac{1}{2}\nabla^{2}\right) \psi_{k}(\mathbf{r}) d\mathbf{r} \text{ Entropy} \qquad -\mu_{e} \sum_{k} f_{k} \ln f_{k} + (1 - f_{k}) \ln f_{k} \text{ Entropy} \qquad -\mu_{e} \sum_{k} f_{k} \int \psi_{k}^{*}(\mathbf{r}) v_{ps}(\mathbf{r}) \psi_{k}(\mathbf{r}) d\mathbf{r} \text{ Pseudopotential contribution} \qquad +\sum_{k} f_{k} \int \psi_{k}^{*}(\mathbf{r}) v_{ps}(\mathbf{r}) \psi_{k}(\mathbf{r}) d\mathbf{r} \text{ Electrostatic energy} \qquad +\frac{1}{2} \int \left[\rho(\mathbf{r}) + \sum_{i} z_{i} c_{i}(\mathbf{r})\right] v(\mathbf{r}) d\mathbf{r} \text{ Electrostatic energy} \qquad -k_{B}T \sum_{i=1}^{p} \int c_{i}(\mathbf{r}) \ln \lambda(\mathbf{r}) d\mathbf{r} \text{ Electrolyte accessibility term} \qquad +k_{B}T \sum_{i=1}^{p} \int c_{i}(\mathbf{r}) \ln \lambda(\mathbf{r}) d\mathbf{r} \text{ Electrolyte entropy} \qquad -\sum_{i=1}^{p} \mu_{i} \int c_{i}(\mathbf{r}) \ln \left(\frac{c_{i}(\mathbf{r})}{c^{0}}\right) d\mathbf{r} \text{ Electrolyte chemical potential} \qquad +\gamma S$$

Έ 'P

System

Quantum System

 $\rho(\boldsymbol{r}) = \rho_{\rm e}(\boldsymbol{r}) + \rho_{\rm nuc}(\boldsymbol{r})$

$$\rho_{\rm e}(\boldsymbol{r}) = \sum_{k} f_k \psi_k(\boldsymbol{r}) \psi_k^*(\boldsymbol{r})$$

Electrostatic potential,v(r)

Dielectric solvent

and

Continuum electrolyte

 $z_i, c_i(r), i = 1 ... p$

Total free energy, $\Omega[\rho_{e}(\mathbf{r}), c_{i}(\mathbf{r}), v(\mathbf{r})]$

is minimized

$$\left[-\frac{1}{2}\nabla^{2} + v_{ps}(\boldsymbol{r}) + v_{xc}(\boldsymbol{r}) + \boldsymbol{v}(\boldsymbol{r})\right]\boldsymbol{\psi}_{\boldsymbol{k}} = \boldsymbol{\varepsilon}_{\boldsymbol{k}}\boldsymbol{\psi}_{\boldsymbol{k}}$$
$$f_{\boldsymbol{k}} = \frac{1}{1 + \exp\left(\frac{\boldsymbol{\varepsilon}_{\boldsymbol{k}} - \mu_{e}}{k_{B}T}\right)}$$
$$\nabla \cdot \left[\boldsymbol{\varepsilon}(\boldsymbol{r})\nabla\boldsymbol{v}(\boldsymbol{r})\right] = -4\pi \left[\rho_{e}(\boldsymbol{r}) + \rho_{nuc}(\boldsymbol{r}) + \sum_{i=1}^{p} z_{i}\boldsymbol{c}_{i}(\boldsymbol{r})\right]$$
$$c_{i}(\boldsymbol{r}) = c^{0}\lambda(\boldsymbol{r})\exp\left(-\frac{z_{i}\boldsymbol{v}(\boldsymbol{r})}{k_{B}T} + \frac{\mu_{i}}{k_{B}T}\right)$$

ONETEP: quantum atomistic (Density Functional Theory - DFT) program with unique linear-scaling computational effort with the number of atoms

ONETEP Calculation procedure in vacuum

ONETEP Calculation procedure with new electrolyte model

Electrolyte Parameters

- $\lambda(\mathbf{r}) = \prod_{I}^{N} \frac{1}{2} \left[1 + \operatorname{erf} \left(\frac{|\mathbf{r} \mathbf{R}_{I}| R_{I}^{\lambda}}{\sigma} \right) \right]$
- $R_I^{\lambda} = R^{\text{solute}}(\rho_e^{\lambda}) + R^{\text{solvent}}$
- Mean activity coefficients from
- Solvation free energies $(\Delta \Omega_i)$

•
$$\ln \gamma_i = \frac{\Delta \Omega_i(c_i^{\infty}) - \Delta \Omega_i(c_i^{\infty} = 0)}{k_B T}$$

• $\ln \gamma_{\text{mean}} = \frac{1}{p} \sum_{1=1}^{p} \ln \gamma_i$

Practical Approach to Large-Scale Electronic Structure Calculations in Electrolyte Solutions via Continuum-Embedded Linear-Scaling Density Functional Theory

Jacek Dziedzic, Arihant Bhandari, Lucian Anton, Chao Peng, James C. Womack, Marjan Famili, Denis Kramer, and Chris-Kriton Skylaris*

Cite This: J. Phys. Chem. C 2020, 124, 7860-7872

Read Online

Differential capacitance of few-layer graphene

Diffuse layer capacitance

Electronic capacitance

Arihant Bhandari, ^{1,2} ¹¹ Chao Peng, ^{3,2} Jacek Dziedzic, ^{1,2} ¹¹ Luc and Chris-Kriton Skylaris^{1,2,1} ¹⁰ Total capacitance $\frac{1}{C_t} = \frac{1}{C_d} + \frac{1}{C_e}$

Critical voltage for degradation due to dendrite growth in Li-ion batteries

University of

• On extended basal plane

THE FARADAY

INSTITUTION

Journal of Materials Chemistry A

View Article Online

Southampton Check for updates Cite this: J. Mater. Chem. A. 2022. 10, 1426

PAPER

Li nucleation on the graphite anode under potential control in Li-ion batteries†

Arihant Bhandari, 10 ^{ab} Chao Peng, 10 ^{bc} Jacek Dziedzic, 10 ^{abd} John R. Owen, 10 ^{ab} Denis Kramer 10 ^{bce} and Chris-Kriton Skylaris 10 ^{*ab}

Nucleation Energy

$$\begin{split} n\,Li + G &\to Li_n G, \\ \Delta \Omega(U) &= \left[\Omega_{Li_n \mid G}(U) - \Omega_G(U) - n \cdot \left(\tilde{\mu}_{Li}^{\text{ref}} \right) \right] \end{split}$$

Critical voltage for degradation due to dendrite growth in Li-ion batteries

Journal of

Arihant Bhandari, ^{® ab} Chao Peng, ^{® bc} Jacek Dziedzic, ^{® abd} John R. Owen, ^{® ab} Denis Kramer ^{® bce} and Chris-Kriton Skylaris [®] *^{ab}

ROYAL SOCIETY

Scope for improvements

• Accessibility function independent of type of electrolyte ion (i)

$$c_i(\mathbf{r}) = \lambda(\mathbf{r})c_i^{\infty} \exp\left[-\frac{z_i\nu(\mathbf{r})}{k_BT}\right]$$

• Point size of electrolyte ions. Finite size effects can be included with a sterically modified Poisson-Boltzmann equation, which limits the maximum concentration (c_{max}) of electrolyte ions.

$$c_i(\mathbf{r}) = \frac{\lambda(\mathbf{r})c_i^{\infty}\exp\left[-\frac{z_i\nu(\mathbf{r})}{k_BT}\right]}{1 - \sum_i \frac{c_i^{\infty}}{c_{\max}} \left(1 - \exp\left[-\frac{z_i\nu(\mathbf{r})}{k_BT}\right]\right)}$$

Bibliography

ONETEP:

- 1 C.-K. Skylaris, P. D. Haynes, A. A. Mostofi and M. C. Payne, J. Chem. Phys., 2005, **122**, 1–10.
- 2 J. C. A. Prentice et al. , J. Chem. Phys., 2020, 152, 174111.

Solvent Model:

- 1 J. Dziedzic, H. H. Helal, C.-K. Skylaris, A. A. Mostofi and M. C. Payne, *Epl*, 2011, **95**, 1–6.
- 2 J. Dziedzic, S. J. Fox, T. Fox, C. S. Tautermann and C.-K. Skylaris, Int. J. Quantum Chem., 2013, **113**, 771–785.
- 3 G. Bramley, M. T. Nguyen, V. A. Glezakou, R. Rousseau and C.-K. Skylaris, J. Chem. Theory Comput., 2020, 16, 2703–2715.

DL_MG:

1 J. C. Womack, L. Anton, J. Dziedzic, P. J. Hasnip, M. I. J. Probert and C.-K. Skylaris, J. Chem. Theory Comput., 2018, 14, 1412–1432.

Electrolyte model:

- J. Dziedzic, A. Bhandari, L. Anton, C. Peng, J. C. Womack, M. Famili, D. Kramer and C.-K. Skylaris, J. Phys. Chem. C, 2020, 124, 7860– 7872.
- 2 A. Bhandari, L. Anton, J. Dziedzic, C. Peng, D. Kramer and C.-K. Skylaris, J. Chem. Phys., 2020, 153, 124101.

Grand canonical Ensemble DFT and applications:

- 1 A. Bhandari, C. Peng, J. Dziedzic, L. Anton, J.R. Owen, D. Kramer, and C.-K. Skylaris, J. Chem. Phys., 2021, 155, 024114.
- 2 A. Bhandari, C. Peng, J. Dziedzic, J. R. Owen, D. Kramer, and C.-K. Skylaris, J. Mater. Chem. A 2022, 10, 11426.

Acknowledgements

- Prof. Dr. Chris-Kriton Skylaris
- Dr. Jacek Dziedzic, Dr. James Womack, Dr. Marjan Famili
- Dr. Lucian Anton (DL_MG, highly parallel, multigrid Poisson-Boltzmann solver)
- Dr. Chao Peng (graphite surface structure models) and Prof. Dr. Denis Kramer
- Prof. Dr. John R. Owen for useful discussions
- Supercomputers: Iridis 5 (Southampton), Archer2, Michael (Faraday Institution) and Young.
- Faraday Institution Multi-Scale Modelling Project (funding)
- Thanks for your attention!

21

Questions

╀