

Electrochemistry simulations using ONETEP

Arihant Bhandari, Chao Peng, Jacek Dziedzic, Lucian Anton, John R. Owen, Denis Kramer, Chris-Kriton Skylaris

University of Southampton, United Kingdom

Simulations of Solid-Electrolyte Interfaces

- Explicit Solvation
 - Treats all species at the same level of chemical accuracy:
 - Electrode (graphite)
 - Solvent (EC)
 - Electrolyte (LiPF₆)
 - SEI species (LiEC, Li₂CO₃, LiF, etc.)
 - Requires explicit structural details.
 - Requires statistical averaging over all possible configurations of all species.
 - Computationally costly.

Norio Takenaka; Yuichi Suzuki; Hirofumi Sakai; Masataka Nagaoka; *J. Phys. Chem. C* 2014, 118, 10874-10882.

Simulations of Solid-Electrolyte Interfaces

Hybrid Quantum-Continuum Model

- Divides the system into two subsystems:
 - "Explicit" system which is treated quantummechanically,
 - In an "implicit" environment which is treated at a mean-field continuum level
- Automatically averages out degrees of freedom of environment.
- Computationally efficient.
- Focus on the explicit system.

"Implicit" Environment "Explicit" Quantum **System**

Sánchez, V. M.; De La Llave, E.; Scherlis, D. A. Langmuir 2011, 27 (6), 2411–2419.

Implicit Model for Solvent

 $\nabla \cdot [\boldsymbol{\varepsilon(r)} \nabla \nu(\boldsymbol{r})] = -4\pi [\rho(\boldsymbol{r}) + \rho_{mob}(\boldsymbol{r})]$

- Dielectric continuum with smoothly varying permittivity
 - $\varepsilon(\mathbf{r}) = 1 + (\varepsilon_{\text{solvent}} 1)\gamma(\mathbf{r})$
- Non-mean field contributions:
 - Cavitation
 - Solid-solvent dispersion
 - Solid-solvent repulsion

are also included as proportional to the solvent accessible surface area.

Dielectric continuum with smoothly varying permittivity • $\varepsilon(r) = 1 + (\varepsilon_{solvent} - 1)\gamma(r)$

- Non-mean field contributions: • Cavitation
 - Solid-solvent dispersion
 - Solid-solvent repulsion

are also included as proportional to the solvent accessible surface area.

Continuum Model for Mobile Electrolyte Ions

- $\nabla \cdot [\varepsilon(\boldsymbol{r}) \nabla v(\boldsymbol{r})] = -4\pi [\rho(\boldsymbol{r}) + \rho_{mob}(\boldsymbol{r})]$
- Electrolyte charge density

Electrolyte Parameters

 \rightarrow found by calibrating activity coefficients of electrolytes with experiments.

Electrolyte Parameters

Read Online

PBCs: Electroneutrality $\nabla \cdot [\varepsilon(\mathbf{r})\nabla v(\mathbf{r})] = -4\pi [\rho(\mathbf{r}) + \rho_{mob}(\mathbf{r})]$

Jellium	Accessible Jellium	Grand canonical electrolyte
Opposite background charge in the entire simulation cell.	Opposite background charge in the electrolyte accessible region.	Non-uniform background charge which follows Poisson- Boltzmann distribution and neutralizes the charge on atoms.
$ \rho_{\rm mob}(\boldsymbol{r}) = -\frac{\int \rho(\boldsymbol{r}')d\boldsymbol{r}'}{\int d\boldsymbol{r}'} $	$\rho_{\rm mob}(\boldsymbol{r}) = -\frac{\lambda(\boldsymbol{r})\int\rho(\boldsymbol{r}')d\boldsymbol{r}'}{\int\lambda(\boldsymbol{r}')d\boldsymbol{r}'}$	$\rho_{\text{mob}}(\boldsymbol{r}) = \lambda(\boldsymbol{r}) \sum_{\boldsymbol{i}} z_{\boldsymbol{i}} c_{\boldsymbol{i}}^{\infty} \exp\left(\frac{-z_{\boldsymbol{i}}[\nu(\boldsymbol{r}) + v_{\boldsymbol{s}}]}{k_{B}T}\right)$

The Journal of Chemical Physic

Electronic structure calculations in electrolyte solutions: Methods for neutralization of extended charged interfaces

Cite as: J. Chem. Phys. **153**, 124101 (2020); https://doi.org/10.1063/5.0021210 Submitted: 08 July 2020 . Accepted: 09 September 2020 . Published Online: 22 September 2020

🦻 Arihant Bhandari, Lucian Anton, 😳 Jacek Dziedzic, Chao Peng, Denis Kramer, and 😳 Chris-Kriton Skylaris

Grand canonical DFT for simulations of charged solid-liquid interfaces

Canonical ensemble of electrons

Electrochemistry from first-principles in the grand canonical ensemble

Cite as: J. Chem. Phys. **155**, 024114 (2021); https://doi.org/10.1063/5.0056514 Submitted: 11 May 2021 • Accepted: 22 June 2021 • Published Online: 12 July 2021

💿 Arihant Bhandari, Chao Peng, 🔟 Jacek Dziedzic, et al.

Ensemble for electrons

Canonical	Grand canonical	
Electronically isolated system.	System connected with an electronic reservoir.	
Number of electrons and the charge is fixed.	Chemical potential of electrons is fixed.	
Chemical potential is found.	Charge is found.	
A = E - TS	$\Omega = E - TS - \mu_e N_e$	

Electrochemistry from first-principles in the The Journal of Chemical Physics grand canonical ensemble

Cite as: J. Chem. Phys. 155, 024114 (2021); https://doi.org/10.1063/5.0056514 Submitted: 11 May 2021 • Accepted: 22 June 2021 • Published Online: 12 July 2021

🔟 Arihant Bhandari, Chao Peng, 🔟 Jacek Dziedzic, et al

System

Quantum System

 $\rho(\mathbf{r}) = \rho_{\rm e}(\mathbf{r}) + \rho_{\rm nuc}(\mathbf{r})$

$$\rho_e(\mathbf{r}) = \sum_k f_k \, \psi_k(\mathbf{r}) \psi_k^*(\mathbf{r})$$

Electrostatic potential, v(r)

Dielectric solvent $\varepsilon(\mathbf{r})$

and

Continuum electrolyte

 $z_i, c_i(r), i = 1 ... p$

 $\Omega = \Omega_{\rm e}[\rho_{\rm e}]$

 $+ \Omega_{\rm mf}[\rho_{\rm e}, \nu, c_i]$

 $+ \Omega_{nmf}$

System
Quantum System

$$\rho(\mathbf{r}) = \rho_{e}(\mathbf{r}) + \rho_{nuc}(\mathbf{r})$$

 $e_{e}(\mathbf{r}) = \sum_{k} f_{k} \psi_{k}(\mathbf{r})\psi_{k}^{*}(\mathbf{r})$
Electrostatic potential, $\nu(\mathbf{r})$
 $\rho(\mathbf{r}) = \rho(\mathbf{r}) + \rho_{nuc}(\mathbf{r})$
 $p_{e}(\mathbf{r}) = \sum_{k} f_{k} \psi_{k}(\mathbf{r})\psi_{k}^{*}(\mathbf{r})$
Electrostatic potential, $\nu(\mathbf{r})$

System
Quantum System

$$(\mathbf{r}) = \rho_{\mathbf{g}}(\mathbf{r}) + \rho_{\mathbf{nuc}}(\mathbf{r})$$

 $\mathbf{p}_{\mathbf{g}}(\mathbf{r}) = \sum_{k} f_{k} \psi_{k}(\mathbf{r}) \psi_{k}^{*}(\mathbf{r})$
 $\mathbf{r} = \sum_{k} f_{k} \psi_{k}(\mathbf{r}) \psi_{k}^{*}(\mathbf{r})$
 $\mathbf{p}_{e}(\mathbf{r}) = \sum_{k} f_{k} \psi_{k}(\mathbf{r}) \psi_{k}^{*}(\mathbf{r})$
 $\mathbf{p}_{k}(\mathbf{r}) \psi_{k}^{*}(\mathbf{r}) \psi_{k}^{*}(\mathbf{r})$
 $\mathbf{p}_{k}(\mathbf{r}) \psi_{k}^{*}(\mathbf{r}) \psi_{k}^{*}(\mathbf{r})$
 $\mathbf{p}_{k}(\mathbf{r}) \psi_{k}^{*}(\mathbf{r}) \psi_{k}^{*}(\mathbf{r})$
 $\mathbf{p}_{k}($

ρ

System

$$\Omega = \sum_{k} f_{k} \int \psi_{k}^{*}(\mathbf{r}) \left(-\frac{1}{2}\nabla^{2}\right) \psi_{k}(\mathbf{r}) d\mathbf{r} \text{ Kinetic energy} \qquad 14$$

$$P(\mathbf{r}) = \rho_{e}(\mathbf{r}) + \rho_{nuc}(\mathbf{r})$$

$$Dielectric solvent \varepsilon(\mathbf{r}) and
Continuum electrolyte
$$z_{i}, c_{i}(\mathbf{r}), i = 1 \dots p$$

$$\rho_{e}(\mathbf{r}) = \sum_{k} f_{k} \psi_{k}(\mathbf{r}) \psi_{k}^{*}(\mathbf{r})$$

$$Electrostatic potential, v(\mathbf{r})$$

$$Electrostatic potential, v(\mathbf{r})$$

$$Electrostatic potential, v(\mathbf{r})$$

$$Electrostatic potential, v(\mathbf{r})$$

$$P(\mathbf{r}) = \sum_{k} f_{k} \int \psi_{k}(\mathbf{r}) \psi_{k}(\mathbf{r}) \nabla \psi_{k}(\mathbf{r}) \nabla \psi_{k}(\mathbf{r}) d\mathbf{r}$$

$$P(\mathbf{r}) = \sum_{k} f_{k} \psi_{k}(\mathbf{r}) \psi_{k}^{*}(\mathbf{r})$$

$$P(\mathbf{r}) = \sum_{k} f_{k} \psi_{k}(\mathbf{r}) \psi_{k}^{*}(\mathbf{r})$$

$$Electrostatic potential, v(\mathbf{r})$$

$$P(\mathbf{r}) = \sum_{k} f_{k} \psi_{k}(\mathbf{r}) \psi_{k}(\mathbf{r})$$

$$P$$$$

C -

System

Quantum System

 $\rho(\boldsymbol{r}) = \rho_{\rm e}(\boldsymbol{r}) + \rho_{\rm nuc}(\boldsymbol{r})$

$$\rho_{\rm e}(\boldsymbol{r}) = \sum_{k} f_k \, \psi_k(\boldsymbol{r}) \psi_k^*(\boldsymbol{r})$$

Electrostatic potential, v(r)

Dielectric solvent $\varepsilon(\mathbf{r})$

and

Continuum electrolyte

 $z_i, c_i(r), i = 1 ... p$

Total free energy, $\Omega[\psi_k(\mathbf{r}), f_k, \nu(\mathbf{r}), c_i(\mathbf{r})]$

is minimized

$$\begin{bmatrix} -\frac{1}{2}\nabla^2 + v_{ps}(\mathbf{r}) + v_{xc}(\mathbf{r}) + \mathbf{v}(\mathbf{r}) \end{bmatrix} \boldsymbol{\psi}_k = \boldsymbol{\varepsilon}_k \boldsymbol{\psi}_k \\ f_k = \frac{1}{1 + \exp\left(\frac{\boldsymbol{\varepsilon}_k - \mu_e}{k_B T}\right)} \\ \mu_e = \mu_e^{ref} - e \cdot U \\ \end{bmatrix}$$
Grand canonical DFT

$$\nabla \cdot [\varepsilon(\mathbf{r})\nabla \mathbf{v}(\mathbf{r})] = -4\pi \left[\rho_{e}(\mathbf{r}) + \rho_{nuc}(\mathbf{r}) + \sum_{i=1}^{p} z_{i}c_{i}(\mathbf{r}) \right]$$
$$c_{i}(\mathbf{r}) = \lambda(\mathbf{r})c_{i}^{\infty}\exp\left(\frac{-z_{i}[\mathbf{v}(\mathbf{r}) + v_{s}]}{k_{B}T}\right)$$
$$\int_{V} \left[\rho_{e}(\mathbf{r}) + \rho_{nuc}(\mathbf{r}) + \sum_{i=1}^{p} z_{i}c_{i}(\mathbf{r}) \right] d\mathbf{r} = 0$$
Poisson-Boltzmann Theory

ONETEP Calculation procedure in vacuum

ONETEP Calculation procedure with new electrolyte model

Differential capacitance of few-layer graphene

Diffuse layer capacitance

Total capacitance $\frac{1}{C_t} = \frac{1}{C_d} + \frac{1}{C_e}$

18

Electronic capacitance

Li plating and dendrite growth on graphite

Gao et al. Joule 5, 393–414, (2021)

- At what voltage with respect to Li/Li⁺ does the nucleation of Li clusters start?
- What is the voltage for onset of dendrite growth in a battery?
- At what location on a graphite particle do dendrites grow?
- What is the effect of electrolyte?
- How can it be prevented?

What are the conditions for dendrite growth in Li-ion batteries

• On extended basal plane

THE FARADAY

INSTITUTION

Journal of Materials Chemistry A

OF CHEMISTRY

PAPER

University of Southampton Check for updates Cite this: J. Mater. Chem. A. 2022, 10, 11426

Li nucleation on the graphite anode under potential control in Li-ion batteries†

Arihant Bhandari, 10 ^{ab} Chao Peng, 10 ^{bc} Jacek Dziedzic, 10 ^{abd} John R. Owen, 10 ^{ab} Denis Kramer 10 ^{bce} and Chris-Kriton Skylaris 10 ^{*ab}

$$n Li + G \rightarrow Li_n G$$

$$\Delta\Omega(U) = \left[\Omega_{Li_nG}(U) - \Omega_G(U) - n \cdot \left(\tilde{\mu}_{Li}^{\text{ref}}\right)\right]$$

Nucleation energy ($\Delta \Omega$)

Potential of zero nucleation energy (PZN)

Computed, Bhandari et al. JMCA 10, 11426, 2022

Zigzag edge	Lithiated graphite	-40 mV
	Unlithiated graphite	-60 mV
Basal plane	Lithiated graphite	-80 mV
	Unlithiated graphite	-120 mV

Experimental, Gao et al. Joule 5, 393, 2021

Mechanisms of Li deposition on graphite

Total charge densityUnlithiated graphiteLithiated graphite

Mechanisms of Li deposition: surface coverage and dendrite growth

Arihant Bhandari, Jacek Dziedzic, John R. Owen, Denis Kramer, Chris K. Skylaris, J. Mater. Chem. A (Under review)

26

We find that the process of Li deposition on graphite anode occurs in following stages:

- Deposition of Li-ions uniformly on the surface of graphite anode at higher voltages (> 0.0 V)
- Reduction of aggregated Li-ions to metallic Li clusters and growth of Li clusters into dendrites (< 0.0 V) We find the cross-over voltage for the above two processes. For safe operation of Li-ion batteries the voltage on graphite should be kept above this cross over value.

Acknowledgements

- Prof. Dr. Chris-Kriton Skylaris
- Dr. Jacek Dziedzic, Dr. James Womack, Dr. Marjan Famili
- Dr. Lucian Anton (DL_MG, highly parallel, multigrid Poisson-Boltzmann solver)
- Dr. Chao Peng (graphite surface structure models) and Prof. Dr. Denis Kramer
- Prof. Dr. John R. Owen for useful discussions

Supercomputers:

- Michael (Faraday Institution), Iridis 5-6 (Southampton), Archer2, and Young.
 Funding:
- Faraday Institution Multi-Scale Modelling Project.

Bibliography

ONETEP:

- 1 C.-K. Skylaris, P. D. Haynes, A. A. Mostofi and M. C. Payne, J. Chem. Phys., 2005, **122**, 1–10.
- 2 J. C. A. Prentice et al. , J. Chem. Phys., 2020, 152, 174111.

Solvent Model:

- 1 J. Dziedzic, H. H. Helal, C.-K. Skylaris, A. A. Mostofi and M. C. Payne, *Epl*, 2011, **95**, 1–6.
- 2 J. Dziedzic, S. J. Fox, T. Fox, C. S. Tautermann and C.-K. Skylaris, Int. J. Quantum Chem., 2013, 113, 771–785.
- 3 G. Bramley, M. T. Nguyen, V. A. Glezakou, R. Rousseau and C.-K. Skylaris, J. Chem. Theory Comput., 2020, 16, 2703–2715.

DL_MG:

1 J. C. Womack, L. Anton, J. Dziedzic, P. J. Hasnip, M. I. J. Probert and C.-K. Skylaris, J. Chem. Theory Comput., 2018, 14, 1412–1432.

Electrolyte model:

- J. Dziedzic, A. Bhandari, L. Anton, C. Peng, J. C. Womack, M. Famili, D. Kramer and C.-K. Skylaris, J. Phys. Chem. C, 2020, 124, 7860– 7872.
- 2 A. Bhandari, L. Anton, J. Dziedzic, C. Peng, D. Kramer and C.-K. Skylaris, J. Chem. Phys., 2020, 153, 124101.

Grand canonical Ensemble DFT and applications:

- 1 A. Bhandari, C. Peng, J. Dziedzic, L. Anton, J.R. Owen, D. Kramer, and C.-K. Skylaris, J. Chem. Phys., 2021, 155, 024114.
- 2 A. Bhandari, C. Peng, J. Dziedzic, J. R. Owen, D. Kramer, and C.-K. Skylaris, J. Mater. Chem. A 2022, 10, 11426.